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ABSTRACT 
Educational games have become an established paradigm of instructional practice, however, 
there is still much to be learned about how to design games so that they can be the most 
beneficial to learners. An important consideration when designing an educational game is 
whether there is good alignment between its content goals and the instructional behaviors it 
makes in order to reinforce those goals. What is needed is a better way to define and evaluate 
this alignment in order to guide the educational game design process. This thesis explores ways 
to operationalize this concept of alignment and demonstrates an analysis technique that helps 
educational game designers measure the alignment of both current educational game designs as 
well as prototypes of future iterations. 

In my work thus far, I have explored the use of replay analysis, which analyzes player experience 
in terms of in-game replay files rather than traditional analytics data, as a means of capturing 
gameplay experience for the evaluation of alignment between an educational game’s feedback 
and its stated goals. The majority of this work has been performed in the context of 
RumbleBlocks, an educational game that teaches basic structural stability and balance concepts to 
young children. This work has highlighted that RumbleBlocks likely possesses a misalignment in 
how it teachers the concept of designing for a low center of mass to students. It has also lead to 
suggestions of design iterations for future implementations of the game. This work has shown 
that replay analysis can be used to evaluate the alignment of an educational game and suggests 
future directions. 

In the proposed work, I plan to demonstrate an extension of replay analysis that I call Projective 
Replay Analysis, which uses recorded student replay data in new versions of the game in order to 
evaluate whether alignment has improved. To do this, I plan to implement two forms of 
projective replay: Literal replay, which replays past player actions through a new game version 
exactly as they were originally recorded; and Flexible, which uses prior player actions as training 
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data for AI player models, which then play through a new game version as if they were players. 
Finally, to assess the validity of this method of game evaluation, I will perform a close-the-loop 
study with a new population of human play testers to validate whether the conclusions reached 
through virtual methods correspond to those reached in a normal playtesting situation. 

This work will make contributions to the fields of human-computer interaction, by exploring the 
benefits of limitations of different replay paradigms for the evaluation of interactive systems; 
learning sciences, by establishing a novel operationalization of alignment for instructional 
moves; and educational game design, by providing a model for using Projective Replay Analysis 
to guide the iterative development of an educational game. 
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INTRODUCTION 
I have gotten used to starting my publications by saying that there is growing interest in the use 
of games for education. However, at this point in my career, I believe it more appropriate to say 
that games are an established mode of instructional practice. James Gee’s seminal book [20], that 
arguably jump started the modern field, was published over a decade ago, when I was just 
graduating from middle school. I went to elementary school just blocks away from the central 
headquarters of the Minnesota Educational Computing Consortium (MECC), the creators of 
Oregon Trail. Games have been a central component of the educational system for as long as I 
have been in that system. Yet in the learning sciences, we seem to be conflicted about whether or 
not they can be beneficial for learning. Every few months we see yet another literature review 
claiming that evidence is mixed as to whether or not games can produce measurable learning 
gains [65]. I believe this is the wrong question to ask. At best it is already solved, requiring only 
an existence proof, of which there are several [9,17,22], and at worst it is fundamentally 
unanswerable [14,33]. At this point, the far more useful question to ask is how do we make 
educational games that are beneficial for learning.  

I am not the first person to ask this question. There are several frameworks on educational game 
design that describe the qualities of good educational games [2,5,6].  However, the vast majority 
of these frameworks provide few recommendations for the actual design process. I like to 
describe this issue by way of an analogy. To me, the promise of educational games is like the 
promise of the new world across the sea. As a field, we have already had a few explorers make 
their way there and they have brought back learning theories that give us a map of which parts of 
the continent would be most fruitful to settle. In effect, we know what we want to create; all we 
have to do is design a voyage that sails a straight line to the land of effective educational games. 
However, the process of crossing that gulf between your current reality and your goal is never 
that easy, in sailing or in design, and it can be fraught with unforeseen perils. The winds of 
stakeholder opinion could change, technology can break down, and all manner of storms can 
come to toss a design off course. When these problems strike, it does no good to have a well-
detailed map that tells you the promised land of effective instruction is west if you have lost the 
sense of which direction you are heading. So, rather than develop yet another definition of a 
good educational game, I instead want to focus on how better to steer toward the desired 
outcome of a good game. 

What is missing from many of these prior conceptions of educational game design is a notion of 
design as a process. To address this gap in the literature, I propose the Projective Replay 
Analysis paradigm, an approach that uses novel game analytics techniques to assist designers in 
aligning their game to its instructional goals. This approach enables designers to carry on a 
reflective conversation with computational models of their target demographic.  

Expected Contributions 
Overall, I expect my work will make contributions to the fields of human-computer interaction, 
learning science, and educational game design. 

In human-computer interaction, replay paradigms have been an established means for the 
evaluation of interactive software. In exploring Projective Replay Analysis, I am probing the 
boundaries of how the nature of particular design changes affect the validity of replay based 
methodologies. The results of my planned studies will provide insight into the benefits and 
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limitations of a literal replay paradigm and hopefully present encouraging support for AI enabled 
flexible replay as a valid method for evaluating future design iterations in the absence of new 
player data. 

In the learning sciences, my focus on measurements of the alignment of instructional moves to 
goals stands to benefit the literature on alignment research, which is typically more focused on 
the alignment of assessments to goals. In particular my definition of alignment in terms of a 
solution space is a novel way to approach the alignment of instructional moves. Further, my 
advocacy of alignment within a common reference frame will hopefully provide clarity to prior 
results in the field. 

In educational game design, I expect to demonstrate Projective Replay Analysis as a method that 
can inform the practice of educational game design in the future. In particular, establishing an 
approach that adheres to the tenants of reflective practice and maintains a connection to student 
data stands to benefit many educational game design efforts. Finally, the reference 
implementation of Projective Replay will stand as a model for how other researchers and 
practitioners can apply my approach in their own work. 

ALIGNMENT 
The fundamental question that this thesis looks to answer is: “Is my educational game good?” 
and relatedly "If I were to make this change could I tell if it was better?” While these questions 
may seem almost uselessly broad, they have power in how they can be asked of any educational 
game designed for any subject. These questions embody the kinds of move-testing hypotheses 
that designers make at the heart of the iterative design process [58]. Of course, a certain amount 
of operationalization is required to make these questions useful. In particular, what does it mean 
for an educational game to be good? The goodness of an educational game could be defined in a 
number of ways but an important aspect that I focus on in this thesis is whether the game meets 
the educational goals that were set for it. I refer to this relationship between a particular design 
and its goals as alignment.  

The desirability of alignment is clear as a matter of design process, just as it is intuitively 
desirable to stay on course when sailing. A complication arises, however, in how best to translate 
this general desirability into some sort of measure that can be used as a yardstick to inform a 
design process. While it is not unreasonable to assume that good products will result from good 
practice, the educational game design process can be complicated by issues like expert blind spot 
[31], the complexity of ill-defined domains [40] and the wickedness of design problems in 
general [11]. What is needed is an operationalization that can take alignment from a general idea 
of process toward a property of a particular design that can be used to inform whether a current 
design is better than another. 

Alignment is originally a term from instructional design literature. Good definitions, however, 
are hard to come by. In most discussions, alignment is used as a term to frame other issues such 
as content/construct validity in assessment [36], or in comparing the connection of state 
assessments to their respective standards [43]. One of the more concise definitions that does exist 
comes from Cohen who defines Instructional Alignment as “... the extent to which stimulus 
conditions match among three instructional components: intended outcomes, instructional 
processes, and instructional assessment” [16]. What this essentially says is that the goals, 
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instruction, and assessment of a particular educational setting are all about the same thing. This 
is important because if the constructs underlying goals, instruction, or assessment differ it results 
in learners and instructors talking past each other. It would be unfair to assess someone on 
calculus when you taught them algebra, and if you really wanted them to be learning chemistry 
then that assessment will not tell you anything useful anyway.  

Cases of misalignment are rarely so glaringly obvious. For example, a recent study of the 
commercially successful algebra game DragonBox found that students tested before and after 
playing the game showed no improvement on a paper and pencil algebra test [39]. While both 
the game and assessment claim to be about algebra, a lack of test improvement would suggest 
that there is some kind of misalignment between the instructional behavior of the game and its 
stated goals.  Alternatively, it could be argued that there is some deficiency in how the particular 
test embodied the domain of algebra. Both the game and the assessment possess the face validity 
to claim to be about algebra, but given the empirical result, they cannot both be right. These 
kinds of ambiguities highlight one of the issues of Cohen’s definition of alignment: if the only 
condition of alignment is that all the elements of goals, instruction, and assessment be the same, 
then any one of them can be suspect. Since every element is equally capable of failure, any 
critique can be dismissed by saying whichever element highlights an error is simply wrong.  

I refer to this conundrum as instructional alignment’s n-body problem. In physics, the n-body 
problem refers to trying to predict the individual motions of n bodies, accounting for all of their 
individual gravitational interactions on each other. The problem is easy for two bodies but gets 
significantly harder, if not impossible, as more bodies are added to the system. Similarly, 
alignment is almost always discussed as a relationship between two things (e.g., state 
assessments and their related standards [43]) but there are many such binary relationships in a 
larger educational system. For example, one could discuss how well aligned a given unit of 
instruction is to its educational goals, or how well aligned the learning goals of an instructional 
product are to what society believes to be a desirable set of skills. Just as in physics based n-body 
problems, measuring alignment requires the assumption of a common reference frame. In 
traditional educational practice this common frame is normally provided by state standards and 
standardized assessments, but those constructs are not relevant to all contexts nor available for 
all domains, particularly when such domains are ill-defined [40]. 

To prevent this kind of crosstalk in practice, the instructional design literature has provided 
several methods for helping to ensure the alignment of instruction. One of the more influential 
such processes is Backwards Design [64]. In Backwards Design, instructional goals form the 
common reference frame against which all other aspects of instruction are considered. In this 
model, instructional goals manifest as a collection of specific understandings that an instructor 
wants their learners to acquire. For each of those goals the instructor must decide on a collection 
of measures, ideally multiple for each goal, that they will use to get a sense of whether a learner 
possess a desired level of understanding in each goal. Finally, they design instructional activities 
that are likely to lead learners to progress on the measures of understanding. 

While Backwards Design has been influential as a model for instructional design, it does have 
some problems in being adapted as a model for educational game design. Firstly, Backwards 
Design is primarily directed toward practicing teachers in traditional classroom contexts. This 
setting allows for instructional design in an environment that affords rich multifaceted 



7 
 

assessment and the ability to pivot instruction readily according to the instructor’s judgment of 
learner behavior. Essentially, Backwards Design works because it is not concerned with shaping 
the form of instructional behaviors or environments but of the understandings of learners 
directly. Designers of educational games and technologies have to take a different approach 
because they are a step removed from the learner.  While ultimately their goal is to craft a 
learner’s understanding, educational game designers have to accomplish that by crafting the 
instructional behaviors of an environment that works in their absence.  

Further complicating the educational game design task is the second order nature of game design 
[56]. Second order design refers to the idea that while a game designer has direct input on the 
rules and mechanics of a game system, the player experience is only indirectly created by these 
mechanics and systems. In interacting with a game, players become part authors of their own 
experience through their choices and actions within the framework provided by the designer. 
This dynamic nature of game play [28] can lead players to discover nuances and implications 
within a game’s system that the designers themselves never anticipated [35]. When a game is 
being designed for an educational purpose, it becomes important to be able to anticipate the 
kinds of experiential variations that players are likely to explore, since the game’s reactions to 
player variation will have to satisfy that educational purpose in the absence of the designer’s 
direct input. 

What educational game designers need is a formulation of alignment that allows them to 
consider how well the instructional behavior of their game aligns to their instructional goals. 
Typically, this is approximated by using some kind of assessment external to the game that can 
act as a reference frame between instruction and goals. Quite a lot of work has gone into methods 
for aligning assessments to particular goal constructs [45]; however, these methods do not 
necessarily provide strong affordances for making the leap between instructional behavior and 
goals. The typical paradigm of assessment driven instructional design is to define some form of 
pre-posttest that is administered before and after an instructional intervention. If an improvement 
on this test is observed then the usual conclusion is that the instruction was good because it did 
its job. While this is a gold standard scientific design, I would argue it is not informative but 
rather confirmatory. If the result is negative or inconclusive then little can be said about what 
aspect of the instructional behavior within a system broke down. This is a problem for iterative 
design because through the course of iteration a designer is likely to deal with far more bad 
prototypes than good ones [21]. 

In order to account for the complexities of games’ second order nature we need an informative 
operationalization of alignment that can do more than confirm whether or not a game is working. 
Such an operationalization needs a way of relating a game’s instructional moves (i.e., feedback) 
to an assessment of player understanding within the context of the game itself. Drilling analysis 
down to a finer grain size of instructional moves allows for a more nuanced evaluation of 
alignment issues than is afforded by the monolithic treatment of a pre-posttest external to the 
game. To this end, I propose to define alignment with a paradigm of internal assessment linked 
to instructional feedback moves that the game makes in response to player actions. The essential 
logic behind this paradigm is that an educational game is about what it incentivizes, and a game 
should be about the same thing you want to be teaching. 
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Before I close the loop on my operationalization of alignment there are still a couple definitions 
to cover. What do I mean by feedback moves and how do I define a player action? To answer 
these questions I want to make what might seem like an unintuitive jump to the idea of game 
spaces.  

All games take place in some kind of space. One way of thinking about this space is as the Magic 
Circle [56] that forms a boundary around the game and gives its components meaning (e.g., 
outside the Magic Circle, Monopoly money is just paper). However, game spaces have other 
useful properties beyond their ability to give endogenous value to game elements. Another useful 
lens for talking about game space is in terms of functional game space [57]. The functional space 
of a game can be thought of as the space in which the game really takes place. For example, 
while the game of Monopoly is printed as a two-dimensional board, in terms of functional space, 
the game is really a single one-dimensional loop of properties. Further, each property is actually 
a zero-dimensional space, as the particular placement of a player piece within the bounds of a 
property is meaningless. 

Using a lens of functional space allows us to define a player action as anything that meaningfully 
changes the state of the functional space of a game. Extending this concept further, a solution to 
a game challenge or level is a collection of player actions that lead to a goal state. This allows us 
to define the solution space to a challenge or level as the set of all pathways through, or 
configurations of, functional game space that lead to goal states. I make the assumption that in 
creating their solution to an in-game challenge a player is expressing their understanding of the 
knowledge and skills (i.e., knowledge components) required to solve that challenge [30]. Under 
this assumption there would arise a qualifiable difference between solutions created by someone 
who understands a concept and someone who does not. Markers of this difference can be 
formalized as a separation function of the solution space in terms of target domain principles. 

Feedback can be defined in similar terms as the collection of changes to the functional game 
space that the game communicates to players in response to their actions. While this collection of 
changes is potentially very large it can be useful to think about it in terms of different channels 
[57] that are functionally distinct. For example, successfully solving an in-game puzzle might 
result in a bright green check mark, animated fireworks, and a “woo-hoo” sound; all of these 
responses are multiple channels of conveying the same message; namely, that the player 
succeeded. Similar to how players with different understandings will generate different portions 
of a solution space, feedback can act as a separation function over the solution space, where a 
certain collection of solutions will be give one type of feedback while the rest will be given 
another. 

Using this operationalization, solutions within a solution space can arrive at one of four 
designations, best thought of as the 2x2 matrix shown in Figure 1. Two quadrants in this matrix 
are desirable and, if solutions consistently land in either one of these quadrants, this indicates 
that the game is well aligned. Solutions that are highly principled would ideally be given some 
form of positive feedback, which would imply that the game is reinforcing target concepts to the 
player. Similarly, solutions that are unprincipled should be given negative feedback, which 
would mean that the game is discouraging deviations from target concepts, allowing a player to 
learn from their mistakes. Solutions would ideally not fall into the other two quadrants, where 
principled solutions are discouraged or unprincipled solutions are reinforced. In these cases, the 



9 
 

game is sending contradictory feedback to students, at best confusing them and at worst fostering 
misconceptions. 

  Domain Judgment 

 
 Unprincipled Principled 

G
am

e 
Fe

ed
ba

ck
 

Positive Bad Good 

Negative Good Bad 

Figure 1. A matrix showing the possible alignment interpretations of student solutions 
based on the agreement between domain judgment and game feedback. 

Coming full circle, I define the alignment of an educational game as the level of agreement 
between the game’s separation function of its solution space (i.e., feedback), and a domain-
principle-based separation function of the solution space. 

Looking at alignment as agreement between how feedback separates a solution space and how 
assessment separates the same space, it would seems like the obvious design solution is to base 
feedback directly on an in-game assessment; however, this is not always possible. For example, 
the target domain might be ill-defined [40] meaning that there is no single strong domain theory 
that could be used to create feedback rules, or any such rules would be subject to debate by 
experts. Alternatively, the instructional goals might be heuristic in nature (e.g., a wider base 
leads to a more stable structure); in which case any decision point used to define “good enough” 
will be inherently arbitrary. Further, the layering of game mechanics onto a pedagogical activity 
entails a certain level of contrivance that invites the possibility of misalignment by accident.  

In all of these cases, playtesting and iteration are essential to see if the instructional behaviors of 
a game are aligning with designers’ expectations. Since the instructional behaviors of a game 
encompass the results of many different design decisions, we need a definition of alignment that 
is capable of functioning at a fine grain size. I believe my definition of alignment as an 
agreement between separations of a solution space serves this purpose. 

GAME ANALYTICS AND PROJECTIVE REPLAY ANALYSIS 
In order to use my notion of alignment to guide the design of effective educational games it is 
necessary to have a way of measuring the alignment of the current state of a design. Beyond 
measurement of a current design, it would also be desirable to have some way of estimating the 
potential that future design iterations hold with regard to alignment. I propose that Projective 
Replay Analysis is an approach that can facilitate measuring how aligned a current game design 
is to its goals and enable the ability to forecast the potential future alignment of a next design 
iteration. In this section, I describe the structure of the Projective Replay Analysis approach as 
well as the related game analytics literature that informs its design. 
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Game Analytics 
The measurement of player experience has been a longstanding interest of both game user 
research and serious games research [37,59]. Many practitioners and researchers have explored 
different ways of measuring player experience [46] including self-report and subjective surveys 
[10,50], biometric and physical response [44,47], and data mining and analytics approaches 
[18,63]. Among these approaches, analytics is the most promising for guiding alignment analysis 
in terms of solution space.  

Game analytics research is generally concerned with the application of game log data (also 
commonly referred to as telemetry) to answer questions about game players and game design . 
There are many approaches to game analytics, and several ways to describe the relationships 
between different methods (see [59] for several different taxonomies). In moving toward a 
design informative process using analytics it is necessary to understand where analytics sits 
within the iterative design process. In his influential account, Donald Schön describes the design 
process as a reflective conversation with a situation [58]. This conversation iterates through 
stages of reframing a design situation, moving to improve the situation, and then evaluating 
whether the move worked. Commonly, analytic approaches typically occupy the evaluation stage 
of this loop in providing a picture of a current design in terms of some framing. Existing 
approaches also support reframing to varying extents in their ability to ask questions beyond 
their original intent. What is generally missing, however, is the ability to explore move testing. 
Rather than employing analytics as a tool throughout the conversation with a situation, a 
designer must step away from their context and ask for it to be analysed before being able to 
form new design hypotheses to test.  

Using Schön’s notion of a reflective conversation as a guide I categorize different game analytics 
techniques into one of three groups based on two distinctions. The first distinction I make is 
whether an approach is generally measure-then-record or record-then-measure. 

Measure-then-record approaches to game analytics work by performing the actual measurement 
of a desirable feature within the game and then recording only the result of that measurement. 
This is generally the realm of very large-scale metric-based [18] approaches to understanding 
player experience where key performance indicators that designers want to record are known 
well in advance [32]. The benefit of these approaches is that they generally require minimal post-
processing of data beyond simple aggregation or statistical testing because the desirable 
information exists directly in game logs. However, a measure-then-record approach has limited 
capacity to inform reframing of a game design situation because what can be said about the 
player experience is only what can be inferred from the measurements that exist in the data, as 
any other context was lost. Because of their capacity for scale and general rigidity, measure-then-
record approaches are usually employed for later stage monitoring of games post release. 

Record-then-measure techniques take the approach of recording some kind of representation of 
the player experience from which measures are distilled. This style of game analytics is far more 
common in educational game work with several existing examples [52,54,60]. The trace-based 
recording approach common to intelligent tutoring systems is also an example of this kind of 
analytics [8,29]. The general benefit of these kinds of approaches is that they preserve some 
portion of the context of the play experience allowing for that experience to be reframed to some 
extent. The second distinction in my categorization of prior analytics approaches is within the 
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group of record-then-measure approaches and asks whether an approach is designed to record-to-
measure or record-to-capture. 

Record-to-measure paradigms are typified by a focus on recording player experience in service 
of a future measurement that is planned. The quintessential example of this kind of approach is 
Evidence-Centered Design [34,45,55], which is focused on  an extensive process of building 
evidentiary arguments about learner competencies before any measurement takes place. Record-
to-measure techniques are generally concerned more with a paradigm of playtesting to prove1 to 
stakeholders that a design is working rather than inform design refinement. While these 
approaches have strong validity for developing assessments I would argue they are less suited for 
informing iterative design because they are generally committed to the lens of their assessment, 
which can limit the ability to reframe the context beyond that measurement. 

Record-to-capture, on the other hand, generally intends to capture the player experience as it 
happened and defers any measurement or characterization of the experience until after it has 
been captured. This is commonly where extremely high fidelity, labor-intensive techniques, like 
video recording will be employed to provide ground truth for other methods [51,53]. These 
forms of analytics are desirable early in the refinement stages of playtesting1 because they are the 
closest to the traditional form of design evaluation via observation. However, the maintenance of 
so much context runs the risk of drowning in excessive detail leading context heavy analytics 
approach to be discouraged by the broader community of research [4,19,38]. 

Replay Analysis 
To enable an approach that is both capable of dealing in the rich complexity of player experience 
and allows designers to carry on their conversation with the design scenario, I propose the 
Projective Replay Analysis paradigm. At its core Projective Replay Analysis is a record-to-
capture serious game analytics technique that grounds itself in lived player experience by 
focusing on the interpretation of replays of players’ sessions. It further enables the use of 
previously captured player replays as input to run through a next iteration version of the game. 
This allows designers to evaluate the potential of a design iteration from the perspective of a 
previously sampled player demographic without having to gather new game play data from that 
demographic. 

This approach differs from prior metric and process based approaches by examining a player’s 
sessions as a live instantiation of the game state within a running game engine. This allows 
analysis to consider a much deeper picture of a player performance, which can be analyzed from 
multiple perspectives, and provides access to more contextual properties of game elements than a 
designer may have thought to measure. Forms of replay have been used to analyse both 
educational technologies [1,7] and interactive systems [49] in the past but the truly novel aspect 
of Projective Replay is the ability to go beyond the original recording context to analyse new 
design iterations using old data.  

The Projective Replay Analysis approach consists of three major components: a schema for 
logging player actions, and a system to replay recorded logs through the game engine, both of 
which I have demonstrated in my prior work [25,26]; and a computational player model that 

                                                   
1 http://playtestingworkshops.com/about.html 
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simulates the decision making process of human play testers, which forms the bulk of my 
proposed work.  

The logging schema is used to capture players’ sessions as replay fidelity log traces. I define 
replay fidelity as detail sufficient to recreate the game state. In general this means capturing 
player actions as well as relevant game context at the level of a basic action, defined as the 
smallest unit of meaningful action that a player can exert on the functional game space. These 
actions are meant to be contextualized to the game world (e.g., picking up or dropping an object), 
rather than the raw input of the player (e.g., mouse down at position (x, y)). Additionally, each 
action is paired with a description of the state of the game just before the action took place to 
provide contextual information. The paired recording of state is important in situations where a 
game’s state and behavior could change for reasons other than direct player action (e.g., a 
physics engine simulating the motion of objects, or an non-player character making its own 
independent decisions). The emphasis on contextualized action paired with state is meant to 
embody a record-to-capture paradigm of analytics and maximize the amount of information to be 
available for future reframing and move testing. 

The second major component of the approach is a system for replaying actions, which I refer to 
as a Replay Analysis Engine (RAE). The RAE reads in a player’s log file and reconstructs the 
player’s play session action-by-action. For each action, the RAE first constructs the state in 
which the action took place and then enacts the player action to let the game engine resolve any 
consequences of the action, using the same code that would normally handle such an action. 
Analyses can then be performed by augmenting the replayed state to create new measures with 
full access to any state attributes that would have been present at playtime. These analyses 
represent an accurate reproduction of the player’s own experience because the re-instantiated 
state is composed of exactly the same game elements, in terms of code. This allows analyses to 
consider each action within the context in which it took place, and to know the initial conditions 
of an action that may take time to broadly affect the game environment. Having paired states 
with each action also allows logs to be replayed accurately without having to interpolate prior 
actions. 

The third component of Projective Replay Analysis, which I will build in my proposed future 
work, is a computational player model used to simulate the decision-making processes of 
playtesters when exploring future game design iterations. This player model comes in two forms 
Literal Replay, and Flexible Replay. In the literal form, this player model simply acts as the 
normal RAE in the new game context by re-enacted players’ actions as they occurred in the 
replay file. If literal replay ever encounters states or actions that are no longer compatible with 
new game mechanics it will simply fail and move on. The second form of player model is one 
augmented with an AI design making process. This player model takes demonstrations from 
players’ replays and learns to perform its own actions within the game, in a style similar to the 
respective player. This player model is implemented using TRESTLE, a model of human 
concept formation [41] that learns hierarchical concept trees given structured examples. Using an 
Apprentice Learner Architecture paradigm [42], an action planner can be used to translate 
demonstrations into generalized action sequences (i.e., how learning) and TRESTLE can be used 
to learn concepts corresponding to when those action sequences should be employed (i.e., when 
learning). These learned action concepts can then be used to perform model tracing similar to 
how intelligent tutoring systems employ production rules [3]. 
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The benefit of Projective Replay Analysis that I plan to demonstrate in my proposed work is that 
it can perform similar analyses on both existing game versions as well as future iterations 
without having to gather new data. Additionally, the method allows analyses to make use of all 
of the game information that would have been available at the time of the original playtest 
enabling multi-faceted measurement that is free to evolve as designer proceed through reframing 
their understanding of the game context. 

PRIOR WORK 
In my prior work I have demonstrated the affordances of Replay Analysis within the context of 
analyzing the educational game RumbleBlocks, a game about building and physics [13]. The 
evaluation of RumbleBlocks was guided by the overarching question of whether the game, as 
currently designed, was well aligned to its instructional goals. The investigation to answer this 
question proceeded through a series of stages that built on each other over time. Each particular 
analysis used a different perspective to frame player experience but all of them derived from the 
same original collection of data. The whole thread of work serves as an initial case study into 
how the Replay Analysis approach enables this kind of broad exploration of game alignment. 

In this section, I will describe the various analyses of RumbleBlocks that I have done in the past 
and how each of them was facilitated by the Replay Analysis approach. This work has 
highlighted some potential issues in the existing design of RumbleBlocks, and suggested 
possibilities for redesign that I plan to explore as a component of my proposed work. 

Background 
Before getting into the details of the different analyses I performed it is necessary to have some 
background on the design and goals of the educational game RumbleBlocks [13] as well as the 
structure of the formative evaluation study that yielded the majority of my data.  

RumbleBlocks 
RumbleBlocks (Figure 2) is an educational game designed to teach basic structural stability and 
balance concepts to children in kindergarten through grade 3 (5-8 years old). Its main focus is on 
three basic principles of stability: 

1. An object with a wider base is more stable 
2. An object that is symmetrical is more stable 
3. An object with a lower center of mass is more stable 

 
These principles are derived from goals outlined in the National Research Council’s Framework 
for New Science Educational Standards [48] and other science education curricula for the target 
age group. 
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Figure 2. A screenshot of RumbleBlocks. 

The game follows a sci-fi narrative where players help a group of stranded aliens on a number of 
foreign planets. Each game level starts with the player finding an alien stranded on a cliff and a 
deactivated spaceship left off to the side of the world (see Figure 2). The player’s goal is to build 
a tower out of blocks that is tall enough to reach the alien so that they can give the alien’s ship 
back. In the process, they must also capture a series of energy dots with their tower, which are 
captured in orbs on the blocks and are narratively used to provide the ship with power. Once the 
player has placed the ship on top of the tower, it powers up, and triggers an earthquake. If the 
earthquake topples the tower, or knocks the ship off the top, then the player fails and must restart 
the level; however, if the tower remains standing, with the ship on top, then the player succeeds 
and moves on to the next level. 

Each set of levels in RumbleBlocks is designed to focus on a different principle of stability. The 
targeting of different principles is accomplished mainly through level design. The energy dots 
can be used to both scaffold and limit students’ solutions to a level, forcing them to prioritize one 
principle over another. However, even with this scaffolded design, there are an unknown number 
of possible valid solutions to any given level because the earthquake mechanic relies on the 
dynamics of a real-time physics engine to evaluate the student’s structure. That is, even though 
the level designer may intend for a particular tower design to be the solution, other designs may 
also work.  

The unknown nature of a given level’s solution space entertains the possibility that players could 
create solutions that ignore the target principle for the level. This would allow learners to 
complete the game without having to contend with the entire set of target principles. While one 
might expect that the physics engine takes care of most of these misalignment cases in 
RumbleBlocks (i.e., regardless of how well a solution embodies the target principle for a level it 
is still subject to the laws of physics), there are many design decisions that can affect this 
behavior. For example, changing the mass and friction properties of blocks can alter how likely a 
structure is to fall down under an earthquake. Additionally, altering the speed or magnitude of 
the earthquake can also affect game outcomes. This presents a challenge in anticipating whether 
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or not the game is providing properly aligned feedback across the myriad of possible player 
experiences. 

Formative Evaluation Study 
The data I will be discussing was gathered as part of a formative evaluation study that I helped 
carry out. This formative evaluation took the form of a series of in-class playtests paired with out 
of game transfer tests. The study was done with 174 students in two Pittsburgh area public 
schools who were in the target demographic (ages 5-8). Testing took place over four sessions: an 
external pretest, two 40 minute sessions of play, and an external posttest.  

Two sets of levels were selected to be used as in-game pre- and posttests counterbalanced across 
players. These levels were chosen out of the normal pool of levels, but were altered to remove 
the energy dot mechanic and to prevent players from retrying after a failed attempt. These special 
levels were placed after a short collection of tutorial levels, which explained the basic mechanics 
of the game, and at the end of the game. This design allowed us to get a sense of how players 
built before and after they had experience with the game. In addition to the in-game evaluations, 
players also took out-of-game paper and pencil tests, before and after playing the game. These 
tests contained items relating to stability and construction, based on the three principles of base 
width, low center of mass, and symmetry. 

Throughout the formative evaluation study, RumbleBlocks was instrumented to record replay 
fidelity log files. In the context of RumbleBlocks this meant recording every time that a player 
picks up or places a block2. I built an RAE into the game in order to take these replay fidelity log 
files and reenact them within the game engine [26]. This engine enabled the various reframings 
of log data that I performed throughout the analysis that follows. 

Replaying for Pre-Posttest Measures 
The formative evaluation study that my data comes from was performed using a pre-posttest 
design. As a first pass of evaluation, I leveraged this pre-posttest design to confirm whether 
RumbleBlocks was succeeding in getting players to improve in their understanding of its target 
principles. As I stated previously such an analysis would primarily be confirmatory with regard 
to alignment evaluation. If positive learning results were found it would be reasonable to assume 
that the game was well aligned but if results are not positive or conclusive then the interpretation 
with regard to alignment becomes unclear. 

The results from the formative evaluation study were promising. The  out-of-game tests showed 
a slight, yet significant increase in player’s performance from pretest to posttest, using a paired-
samples t-test, t(173) = −2.13, p = .03, d = .16. Looking at players’ pass rates on the in-game pre-
post levels would seem to suggest a similar conclusion, showing a significant, medium sized 
increate in performance using a paired-samples t-test, t(173) = −4.96, p <.001, d =.51.  

While these initial pre-posttest results are encouraging, I wanted to look into the replay data to 
see if there was behavioral evidence that players not only got better at the game but did so 
because they were better instantiating the principles it targets. This would mean that before and 
after playing the game for some time, players would build towers in the unguided pre-posttest 

                                                   
2 The game also logged any time that any two objects collided by this proved to be an excessive amount of detail. 
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levels that showed a better awareness that (1) a structure with a wide base is more stable, (2) a 
structure with a lower center of mass is more stable, and (3) a structure that is symmetrical is 
more stable. It is important to note that looking at a difference in metrics related to learning goals 
is different from looking at the difference in player success rate. If we entertain the possibility 
that the game is not necessarily well aligned, then it is possible that players could improve in 
their pass rate in the game for reasons other than following the principles that are central to the 
game’s goals. 

To find out whether players were better leveraging the physics principles targeted by the game in 
their solutions, I instrumented the RAE to calculate a variety of metrics based on each player’s 
final state of each in-game pre-posttest level. I refer to these metrics as Principle-Relevant 
Metrics (PRMs) in that they are metrics that are intrinsically tied to one of the principles of 
stability that the game targets. These metrics were: the width of the tower’s base (Figure 3A), the 
height of the tower’s center of mass relative to the ground (Figure 3B), and a measure of 
symmetry defined as the angle formed by a ray from the center of the base to the center of mass 
and 90° (Figure 3C). Once I had a base of metrics I normalized the scores across players within 
each to have a mean of 0 and a standard deviation of 1. This was done to account for the nuanced 
difference in level design making it difficult to compare metrics directly between levels that 
possess different affordances for solution design. 

 

Figure 3. A visual depiction of each of the 3 Principle-Relevant Metrics used in analysis. 
(A) Base Width, (B) Center of Mass Height, and (C) Symmetry Angle. 

To see if there was any improvement on the use of principles in players solutions from the pre- 
and posttest levels I compared each students averaged PRMs using a paired-samples t-test. 
Looking at the results in Table 1 I saw a significant improvement for the base width and 
symmetry metrics, meaning that at the end of playing the game, students were beginning to 
design towers that had wider bases and more symmetrical layouts. However, I did not see any 
significant difference in terms of center of mass height, meaning that students did not seem to 
attempt to lower the center of mass of their structures. This result suggests the possibility that the 
current version of the game may possess a misalignment in how it handles the low center of mass 
principle, however as stated previously a null result in pre-posttest comparison cannot reach this 
conclusion definitively.  
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Metric 

Pretest Posttest 

t(173) p D M SD M SD 

Base Width .60 .01 .64 .01 -2.77 .006 .30 

Center of Mass Height 1.61 .02 1.63 .02 -.66 .501 .08 

Symmetry Angle 5.98 .34 5.20 .27 1.98 .050 .19 

Table 1. t-test results for average Principle-Relevant Metrics from pretest to posttest. 

Feedback Alignment Analysis 
Knowing from the pre-post level analysis that there were possibly some misalignment issues 
with RumbleBlocks, the next step in analysis was to determine if the game was properly 
incentivizing players to act in a way that corresponds to the goals for the game. If the game is 
knocking over towers that are principled or letting poorly designed towers remain standing, then 
players will not know what to make of the feedback they are given and improve toward better 
understanding. Such cases would be examples of misalignment. 

To examine this question I wanted to test if there was a relation between the relative principled-
ness of student solutions and the whether the game deemed the solutions successful. To do this I 
needed to establish whether the principled-ness of a tower (measured by the relevant PRM) could 
predict that a tower would stand or fall in the earthquake. To explore this question I employed a 
regression analysis.  What we would expect from this analysis is that the principle which is 
targeted by a level has a strong predictive relationship with success on that level. Further, It is 
important to note that this analysis is concerned primarily with the behavior of the game and not 
with student performance. In this context students are merely providing the test data for my 
analysis of the game’s system. 

To facilitate this analysis, I employed the RAE to calculate the same PRMs from the pre-post 
analysis, except this time to do it for all levels. I wanted to explore how well metrics that should 
indicate a well-constructed tower (i.e., a domain-principle-based separation function of solution 
space) actually corresponded to a player passing a given level (i.e., a feedback-based separation 
function of solution space). To do this, I created 3 groups of solutions by collecting together all 
player solutions to levels that target each of the three principles (i.e., all levels targeting the wide 
base principle together, all levels targeting the low center of mass principles together and all 
levels targeting the symmetry principle together). I performed a logistic regression using each of 
the metrics of the players’ towers (generated by replay analysis) to predict success on a level, 
with all metrics normalized within level to mean 0 and standard deviation to account for 
variation due to level design.  

The results of the regression analyses can be found in Table 2. When looking at the PRMs for 
base width and symmetry levels, there is a significant relationship between the PRM and success 
on the level, which is what would be expected if those levels are appropriately incentivizing their 
target principle. The relationship for the center of mass PRM however was not found to be 
significant. This would mean that, counter to what the target principles suggest, players who 
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build with lower centers of mass are not any more likely to succeed on levels that target the 
center of mass principle than players who build towers with higher centers of mass. This could 
not have been the RumbleBlocks designers’ intent. 

Group Coefficient B SE B β p 

Symmetry Levels 
(df = 1788) 

(Intercept) 1.044 .061 17.250 < .001 

Base Width .449 .054 8.368 < .001 

Center of Mass Height .418 .089 4.700 < .001 

Symmetry Angle -.205 .069 -2.969 .003 

Center of Mass Levels 
(df = 2107) 

(Intercept) 1.379 .063 22.042 < .001 

Base Width .022 .066 .326 .745 

Center of Mass Height -.046 .047 -.975 .330 

Symmetry Angle -.165 .043 -3.803 < .001 

Wide Base Levels 
(df = 1997) 

(Intercept) 1.729 .074 23.463 < .001 

Base Width .221 .069 3.229 .001 

Center of Mass Height -.113 .097 -1.164 .245 

Symmetry Angle .011 .078 .135 .893 

Table 2 The results of a logistic regression of success of solution on principle relevant 
metrics for levels targeting each of the three principles. Note that for the Center of Mass 

and Symmetry Angle principles a lower coefficient estimate (B) is better. 

Clustering Replayed Solutions 
The logistic regression analysis agrees with the previous findings that players did not seem to be 
improving at the center of mass principle likely because they are not being given consistent 
feedback in terms of the principle. The next question that arises out of this is: if players are not 
getting consistent feedback on the center of mass principle, what is the game doing in these 
situations? Answering this question requires the ability to look at players’ solutions in much 
closer detail than is provided by distilled metrics. The Replay Analysis Approach can provide the 
ability to look at the particular structure of solutions that the players create, and how the game 
reacted in those situations.  

Attacking this question required wrestling with the issue that neither the designers of 
RumbleBlocks not I had a sense of how many ways there were to solve any of the levels in the 
game. Further among the various ways to solve each level, which ones are the young players of 
the games target demographic more likely to employ. Resolving these issues would enable 
looking at the kinds of feedback the game provides to common solutions and whether that 
feedback appears to make sense given the principles of the game. Rather than comb through 
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myriad solutions to each level myself I made use of the RAE to reframe the log data I has as a 
detailed representation of a the solution space of each game level that was amenable to machine 
learning methods.  

At a high level, this analysis involves capturing a picture of the space of solutions that students 
use to overcome in-game challenges. This solution space is generated by clustering the 
individual solutions created by students into a subset of representative solutions (because there 
are too many to view individually). Once a collection of representative solutions is gathered, 
each one is evaluated in terms of its PRMs. Finally, the PRM is compared to the positive or 
negative feedback designation that the game’s mechanics assigned to the majority of individual 
solutions embodied by each of the representative solutions. This allows me to analyze the 
general principled-ness of a group of student solutions and how the game treated them as a 
means of evaluating alignment. 

To perform these analyses, I first had to convert the solutions into a representation that captured 
their essential structural features. For example, many students might build a tower that uses an 
arch pattern, whereas others might build an inverted “T” shape. I wanted a representation that 
captured elements of these basic structural patterns. To build this new representation, I first 
instrumented the RAE to produce representations of student towers aligned to a two dimensional 
grid. This process makes use of a number of capabilities exposed by the game engine in the 
RAE, such as the physical properties of blocks (e.g., their collider dimensions) that would not 
have been possible to recover without a live engine. 

Next, I employed two-dimensional grammar induction to learn a set of patterns that could be 
used to describe all of the student solutions in the entire dataset. A two-dimensional grammar 
consists of three components:  

1. Terminal Symbols, which represent the blocks, spaceship, and empty space (in this 
context);  

2. Non-terminal Symbols, which represent structural patterns consisting of more than a 
single block 

3. Rules, which map non-terminal symbols to pairs of other non-terminal symbols oriented 
in a certain direction (horizontal or vertical), or non-terminals to terminal symbols (a 
unary relationship). 

To help illustrate the concept, Figure 4 shows an example grammar (u, h, and v represent unary, 
horizontal, and vertical respectively), and the parses for two simple towers. 

To learn a grammar, I employed an algorithm developed with colleagues called conceptual 
feature extraction (CFE) [24]. CFE first generates an exhaustive set of rules that describe every 
possible way to parse all of the solutions in the set. Next it computers all of the possible parses of 
each solution. Given the parses for each solution, it creates a vector for each solution which 
contains a 1 for every non-terminal present in the solution and a 0 for every non-terminal not 
present in the solution. This resulting feature vectors contains information about all of the 
structural patterns present in each solution. These patterns may correspond to individual blocks, 
pairs of blocks, other combinations of blocks, or even whole towers. 
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Figure 4. A simple two-dimensional grammar (a) and the parse trees generated by applying 
this grammar to two solutions (b and c). 

For each level, I clustered the featurized solutions using g-means, a variant of the common k-
means clustering algorithm that chooses a value for k optimizing for a Gaussian distribution 
within clusters [23]. This produced a set of different groups for each level, where each group 
represents solutions that share structural similarity. The resultant clusters can be summarized as 
representative solutions that embody the general trend within the cluster. For each cluster, I 
created a representative solution by averaging the PRM scores within the cluster and then 
assigning the success label that the game assigned to the majority of solutions within the cluster. 
This gives me the ability to think about common patterns of solutions through a single 
representative solution rather than individual solutions.  

To get a sense of the general trends in how the game treats different solutions to a particular level 
I created representative plots of the clusters like the one show in Figure 5. These plots show each 
representative solution plotted with its frequency of use (as a percentage of all observed solutions 
for that level) along the x-axis and its relative principled-ness, in terms of a normalized PRM 
score, along the y-axis. The squares represent solutions that are mostly successful where the 
filled diamonds show solutions that are mostly unsuccessful. When examining these plots, two 
different patterns are primarily of interest: principled failures and unprincipled successes, which 
both represent the game generally giving feedback contrary to the target principle for the 
particular level. These cases can shed light on potential problems with a game’s alignment. The 
analysis of RumbleBlocks highlighted several cases, but for the purposes of this paper, I will 
discuss two in detail. 

 

Figure 5. A plot of representative solutions’ PRM score versus frequency. 

The first problem level is Symmetry_7 meaning that the level is meant to be targeting the 
concept that a symmetrical structure is more stable. In this example, there are two highly 
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frequent solutions: the two points farther to the right in Figure 6. One is mostly successful and 
the other is mostly unsuccessful, but they do not differ strongly in their PRM scores. When I 
examine screenshots of student solutions to this level, I saw the situation in Figure 6, where the 
tower on the left (an inverted T-shape) comes from the majority failure solution while the tower 
on the right (an arch shape) comes from the majority success solution. While it is clear from the 
examples that the left tower should fail (as it did frequently), it is important to remember that this 
level is designed to target the symmetry principle, which says a symmetrical structure should be 
more stable. Both solutions seen in these representative solutions are generally symmetrical, but 
one was considered a failure while the other is considered a success. This case represents 
RumbleBlocks giving inconsistent feedback to players about the targeted symmetry principle. An 
alternative interpretation is that this level should not be labeled as targeting the symmetry 
principle give that its two most frequently used solutions both embody a reasonable level of 
symmetry. 

 

Figure 6. A plot of solution frequency (as a percentage) vs. PRM score for all of the clusters 
on the Symmetry_07 level of RumbleBlocks and Two example student solutions to the 

Symmetry_07 level. The solution on the left comes from a majority unsuccessful cluster 

Another anomalous example is shown in Figure 7, which shows a plot of the different solutions 
to the level CenterOfMass_10_PP. This level was used as part of an in-game pre-post design 
meaning it omits the energy dot mechanic and is based on a level designed to target the low 
center of mass principle. It is harder to attribute patterns in the chart to elements of level design 
because it lacks the energy dot mechanic and thus does not restrict players as much as normal 
game levels; however, an interesting pattern develops nonetheless. The distribution of how many 
students created each solution on this level is more evenly spread out, but among groups of 
solutions that are all relatively equal in PRM score, we see two solutions, which are majority 
failure rather than success. 

Visually inspecting the solutions students created to this level, we see the pattern that arises in 
Figure 7, where an example from one of the nearby successful solutions is shown on the top and 
an example from each of the unsuccessful solutions is shown on the bottom. The salient feature 
to note among the unsuccessful solutions is the presence of the alien’s spaceship on top of a 
single square block. This points to a nuance in the game’s mechanics, where an additional 
constraint on game success is whether the spaceship falls off the tower during the earthquake and 
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not just that the tower continues to stand up. This opens the possibility, illustrated by the lower 
right quadrant of the matrix in Figure 1, that a student could build a perfectly reasonable tower 
that is judged as unsuccessful by the game because the spaceship falls off. This is an example of 
the more nuanced kind of alignment failure where a task requires an extra piece of unexpected 
knowledge to complete successfully. While the spaceship should also be subject to the same 
stability principles this level seemed to suggest it was a major determining factor in success. 

  

Figure 7. A plot of solution frequency (as a percentage) vs. PRM score for all of the clusters 
on the CenterOfMass_10_PP level of RumbleBlocks and examples of student solutions on 
the CenterOfMass_10_PP level. The solution at the top comes from one of the majority 

unsuccessful clusters. 

The patterns I observed in our analysis of the Symmetry_7, and CenterOfMass_10_PP data were 
present in a number of other levels as well. As a pattern of salient features emerged, I wanted to 
see if there was further; evidence in the structural data to support the conclusion the 
RumbleBlocks might have an issue in certain structural features exerting too much influence on 
the success of a tower. To do this I used the structural features generated through the CFE 
process and used a χ2 analysis to identify which structural features present in student solutions 
were more predictive of success. I performed a χ2 test of each of the 6,010 symbols against 
solution success to see which patterns were most strongly related to success of a tower. Because 
this constitutes a large number of statistical tests and increases the possibility of Type I error, I 
applied a Bonferroni correction to the results to account for the number of statistical tests. This 
correction divides the usual cutoff for considering a result to be significant (.05) by the number 
of tests performed (6,010) and uses the result (8.32e-6) as the new bar for significance. 

Overall, 19 grammar symbols were significantly related to success. However, representing the 
grammar symbols with grounded game objects resulted in only five distinct structures3. Once I 
had a selection of significant features I performed a logistic regression of those features against 
solution success to understand the direction of the relationship (i.e., does each feature predict 
                                                   
3 The CFE process uses a set of recursive rules to represent space allowing it to create multiple symbols that would 
look visually the same but differ in how the negative space around the tower is handled. More details on this 
limitation can be found in the paper on CFE [24]. 
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success or failure). I only present the directional results of this regression and not the actual 
coefficients. The results of this process are visually rendered in Figure 8. 

 

Figure 8. Rendered results of a χ2 analysis of structural features in RumbleBlocks which 
predict the success of a tower in the earthquake. Student solutions that contained the 

features in the failure region to the left were more likely to be unsuccessful in the 
earthquake while solutions that contained the feature in the success region to the right were 

more likely to be successful. 

Our original question asked: if players are not getting consistent feedback on the center of mass 
principle, what is the game doing in these situations? The pattern that arises from the χ2 analysis 
demonstrates that the game tends to focus more on points of weakness with a lone square block 
without supports. This would mean that the game is generally punishing more nuanced sub 
structural faults of towers. The principles targeted by RumbleBlocks are generally meant to apply 
to whole structures and so do not necessarily accounted for these kinds of smaller structural 
problems. This would suggest some misalignment between the stated goals of the game and its 
feedback mechanisms as instantiated in the earthquake mechanic. 

Further, the analysis demonstrates a strong difference between the width of the platform the 
spaceship is placed on and the eventual success of the tower (i.e., placing the spaceship on a 
single block is more likely to lead to failure and placing it on a wide block is more likely to lead 
to success). This points to the importance of the spaceship remaining on top of the tower as a 
secondary success criterion. While the designers were aware that the spaceship served such a 
purpose in the design, they probably did not think it would be such a strong determining factor to 
the potential detriment of other learning goals. When pursuing iteration, the designers of 
RumbleBlocks will have to consider if this result represents a flaw in the game’s mechanics, 
which contradicts the message, or an opportunity to teach a nuanced aspect of stability and 
balance with some new feedback. 

Design Recommendations 
Examining the alignment results, I saw that there are cases where adherence to the target 
principle of a level does not translate into success for players. This would mean that the game is 
not providing feedback that will actually help students attend to their errors by thinking about the 
domain principles. If we look at the case of Symmetry_7 we see a pattern where successful and 
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unsuccessful solutions are essentially the same in terms of PRM score. What is interesting about 
this particular example is that the unsuccessful solution is equivalent or better in terms of the 
score on both of the other two principles, wide base and low center of mass. When combined 
with the evidence form the χ2 analysis that micro faults in a towers design are more likely to be a 
cause of failure than broad features this highlights the possibility that game’s feedback structure 
is more complex than it should be to foster its desired principles.  

One way of addressing this problem of micro faults is to explore a version of the game were 
blocks act together as a single rigid body, making it so feedback is likely to be better aligned 
with the broad principles that the game is meant to target. Using a design that involved 
connected structures was considered in the preliminary design phases of RumbleBlocks4, but 
initial prototype testing indicated that players found the disconnected structure to be more fun to 
play with. The designers also thought that having a disconnected block mechanic would allow 
for more interesting dynamics in the design. However, if we introduce a mechanic that allows 
players to glue blocks together so that the blocks act more like the connected structures, the level 
may be better modeled by the principle-relevant metrics. As previously noted by the designers, 
this mechanical change would cause fully connected structures to react less to the in-game 
earthquake. A number of mechanical options could be considered to account for the drop in 
dynamics, such as adding in negative energy dots or more interesting terrain features (such as 
ravines between the alien and their ship). 

Another possibility for changing the mechanics could be to remove the spaceship as a factor 
entirely. This solution would address the alignment problems highlighted in the 
CenterOfMass_10_PP example as well as the χ2 analysis by removing the secondary success 
criteria of keeping the ship on the tower. Removing the spaceship mechanic could also preserve 
the interesting dynamics of having disconnected structures, which were valued by the designers; 
however, it adds other mechanical difficulties, such as removing the mechanic for how players 
submit a solution – placing the ship on top of the tower – as well as damaging the narrative 
aesthetic of the game by no longer having the player trying to return the ship to the alien.  

Each of these analyses has contributed to an evolving understanding of the state of RumbleBlocks 
while also serving as a case study in the use of Replay Analysis to drive the alignment evaluation 
of an educational game. With the ability to reframe the recorded game data, I would not have 
been able to pivot between looking at trends in metrics to trends in structural patterns. Being able 
to follow the evolving thread of analysis allowed for the recommendation of several concrete 
design alternatives. What remains now is to see whether though new alternatives fix the 
problems that I have described. 

PROPOSED WORK 
My body of prior work has demonstrated the power of Replay Analysis to explore the alignment 
of an educational game using observed player behavior. The approach enabled several different 
kinds of analysis of RumbleBlocks and highlighted several potential directions for future designs. 
These conclusions alone would be enough to suggest several new iterations and subsequent 
formative evaluations. I propose to perform a close-the-loop [15] study that can prove that not 
only was Replay Analysis able to yield alignment focused design recommendations, but acting 

                                                   
4 http://www.etc.cmu.edu/projects/illuminate/?page_id=221 
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on those recommendations will result in a better game. In addition to this study also propose to 
explore the potential for Replay Analysis further by demonstrating the ability to use Projective 
Replay Analysis to better understand the potential future directions a game design could take 
without having to gather new data. 

While the paradigm of Projective Replay Analysis has potential benefit for guiding closed-loop 
design iteration, there is one fundamental concern with the approach; namely, if the game is 
different then players will play it differently. This would seem to imply that the instant a game’s 
mechanics are changed, any replay recordings taken from the old version of the game instantly 
become invalid. I do not dispute this notion in general; however, I would argue that any change 
in player behavior from mechanical change is not absolute but rather a matter of degrees and 
dependent on the nature of the particular change made. It is this relationship between types of 
game design change and changes in player behavior that I plan to explore in my proposed work. 

To frame this question of the effect of changing a game on the behavior of players I want to 
return to notion of alignment as a property of a game’s solution space. Any change to a games 
mechanical structure will have one of five possible effects on its solutions space:  

1. The new solution space could remain the same. This would mean that the affordances 
available to players to explore the solution space are no different than they were before. 
While space remains the same, the mechanical change could cause existing solutions to 
receive different feedback leading to players to explore portions of the solutions space 
more or less often than before. 

2. The new solution space could be a subset of what it was before. In this case previously 
reachable solutions are no longer possible. This would be desirable in cases where 
specific solutions or mechanical uses were found to foster misconceptions.  

3. The new solution space could be a superset of what it was before. This would mean that 
the game now affords more variation to players than it originally did. In such cases it is 
necessary to evaluate the alignment of this new territory of the solution space to ensure 
educational goals are still being met. 

4. The new solution space could be a shift of the original space. That is, the space shrinks in 
some areas and grows in others. I would expect this form of solution space change to be 
more common than the subset and superset ones as it is rare that a mechanical change 
would be so localized. 

5. The new solutions space could be a disjoint set from the original. This is the case where a 
mechanical change was so fundamental that it created an entirely new game. 

To facilitate my exploration of the relationship between game design changes and player 
behavior I propose to implement two forms of Projective Replay Analysis. The first form, which 
I call Literal Replay (Literal PRA from now on), takes a players replay trace and reenacts it 
literally into the new game space as it was recorded. This first approach has the benefit of being 
cheap, as it is essentially how the RAE currently works, but it is also maximally confounded. If a 
design change renders a previously observed action impossible then a literal replay paradigm 
would simply fail. Alternatively, if a design change broadened the solution space by opened up 
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strategic possibilities that were impossible before, then literal replays would not be able to 
handle the additional nuance. 

To combat the limitations of Literal PRA I propose the second form of projective replay that I 
plan to explore: Flexible Replay (Flexible PRA from now on). In a Flexible PRA system, rather 
than take players’ actions and re-enact them directly, the system instead uses them as training 
data for a player model. The player model simulates human behavior by approximating humans' 
knowledge acquisition and problem-solving processes [42]. The model is designed to acquire 
skill knowledge using demonstrations from an expert, but in this case the “expert” takes the form 
of individual replay traces of prior players. This in essence allows for the creation of virtual play 
testers that model the skills observed in prior playtesting populations. 

The use of AI players models to test game designs has be suggested before; however, these 
earlier efforts have generally been in the style of computational caricatures [61] in that they are 
computational models designed to exaggerate some aspect of human behavior in order to make 
an argument. Holmgård et al. demonstrated the use of AI models for playtesting a puzzle game 
and found that there was little difference between models based on human playtesters data and 
the models designed by the designer [27]. The models in this work were based on a relatively 
simple game domain (navigating a maze where input is restricted to the four cardinal directions) 
and did not model the incremental learning processes of players. Further work has also been 
done to virtually playtest sketch-based and formal representations of games [62]. While these 
formalized approaches have shown much promise they require a designer to form their ideas in a 
representation that may not be readily natural to them. 

To explore the potential of these two forms of Projective Replay Analysis I plan to undertake 
three studies. The overall question of these studies will be to validate the projective approach 
through a series of progressively more stringent tests. The first study will seek to demonstrate 
that the mechanical variations suggested by my prior replay analyses result in measurably better 
alignment using a Literal PRA analysis paradigm. The second study will probe the limitations of 
Literal PRA by comparing it to a Flexible PRA of the same game variations. Finally, the third 
study will look at fully closing the loop on design variations suggested in previous studies by 
performing a new formative evaluation with real students in a classroom setting. The results of 
this final study can serve as a ground truth comparison for the virtual playtests to establish the 
overall validity of virtual playtesting. In the following subsections I describe each study in more 
detail as well as an expected timeline. 

Study 1 
In the first study, I seek to demonstrate the initial feasibility of Literal PRA as well as answer the 
question of whether the recommendations that arose from prior alignment analyses actually lead 
to a better-aligned game. To answer this question, I plan to implement the design 
recommendations from the prior analyses of RumbleBlocks as two alternate variations of the 
game. I will then apply a paradigm of literal replay analysis using the same log data from my 
prior work. 

First, I will modify RumbleBlocks to produce two variations. In the first variation, I will 
introduce a mechanic where placed blocks stick together as if they were glued together (with 
‘gluing’ happening as soon as the player places a block). This variation is a response to the 
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potential alignment issue with RumbleBlocks where success in the game seems overly dependent 
on micro faults in a tower’s design rather than broader structural patterns as suggested by the 
game’s target principles. The second variation is a response to the χ2 analysis, which highlighted 
that the spaceship remaining on top of the tower is too important as a secondary success criterion 
in the success of the tower. To remove this issue, I will alter the mechanics of the game so that 
while the earthquake is happening, the spaceship simply floats above the tower, and is not 
affected by the shaking of the tower. This will require an alteration to the success mechanics of 
the game, changing the goal so that rather than keep the spaceship on top of the tower players 
will instead try to keep the blocks of the tower from shifting too much in the earthquake. This 
can be implemented by staying that the energy dots must remain activated by the tower at the 
end of the earthquake (which is not currently always the case). 

Once new game variations are implemented, I will perform a Literal PRA with the log data from 
the original formative evaluation(s) of RumbleBlocks on both variations of the game. Because the 
game will now behave differently, player solutions are likely to be assigned different feedback 
than they were in the original version, causing a shift in alignment due to changing the game’s 
feedback function. I predict that the alignment that results from these new versions of the game 
will be better (i.e., when re-running regression analyses all metrics will have a stronger and 
better-directed statistical relationship with feedback) than the current version of the game. 
Specifically, I think that the first variation (gluing blocks together) will result in better-directed 
metrics, and the second variation (changing the spaceship) will reduce the strength of the 
secondary success criterion. 

Study 2 
As I discussed previously, a strong caveat to the use of the Literal PRA paradigm is the 
possibility that game variation changes alignment by fundamentally altering the solution space 
rather than merely relabeling existing solutions. The main research question behind Study 2 is to 
investigate the extent to which this is a concern using Flexible PRA. 

To explore this question, instead of replaying student’s literal logs in the newly designed game 
variations, I will use them as training data for a player model. This player model will receive 
students’ actions as demonstrations, which they will use to learn skill concepts for the game. The 
player models will then be used to play the game variations in order to generate new game 
actions. The solutions created by these actions will then be evaluated as if they had been 
generated by the students themselves. These solutions will be similar in character to the ones the 
students originally created, but they will have a chance to be distinct and responsive to the new 
dynamics created by the variation in game mechanics. 

To analyze Flexible PRA, I will apply the method used in Study 1, comparing the metrics 
generated by the models’ solutions to feedback provided by the game, and looking at the 
common occurrences of structural patterns. Additionally, I will compare the amount of solution 
space overlap between the original students and the flexible player models. At this point it is 
difficult to anticipate how the conclusion with regard to alignment will change using Flexible 
PRA rather than Literal PRA. Literal PRA is likely to more strongly conclude that the proposed 
design variations show better alignment between domain principles and game feedback because 
those variations are based directly off of the play experience recorded in the literal logs. 
However, Literal PRA would be confounded by not taking into account how players will react 
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differently to new game dynamics. This would suggest that even if Flexible PRA reaches a 
weaker conclusion with regard to alignment than Literal PRA, that conclusion is likely to be 
more valid by better accounting for player variation. Definitively answering the question of 
which approach is more valid will require the results from study 3. 

Study 3 
The ultimate goal of the educational game design process is to create a game that new players 
can learn from. Therefore, the only true way to know if a game has become better is to test it 
with a new population of learners. In my third study, I plan to perform a closed-loop evaluation 
[15] of the game design modifications of RumbleBlocks implemented in Study 1. This will allow 
me to answer the two main research questions of my work, as well as validate the answers to 
these questions found in Studies 1 and 2. 

The ideal context of this study would be to recruit a new classroom population of students. 
However, previous analysis of the game [12] and informal observations suggest that, while the 
game has been evaluated with a broad age range demographic (K-3), it is generally better suited 
to the higher-end age range of the demographic. In order to simplify the recruitment process, I 
will only focus on finding populations within the Grades 2-3 range. 

The structure of the study will follow a similar design to the original formative evaluation of 
RumbleBlocks. Students will first take the pretest designed for the original formative evaluation 
with a few modifications based on previous psychometric evaluations [12]. Then students will be 
given two class periods worth of time to play the game with the modifications introduced in 
Study 1. Finally students will take the posttest (as used in the previous evaluation). The pretest 
and posttest have counterbalanced items, which will be used to evaluate students’ general 
understanding of balance and stability concepts before and after playing the game. 

Once the study is complete, I will perform the same analysis as was used in the past two studies 
to determine whether the game modifications led to an improvement in alignment. Further, I will 
compare the overlap in solution spaces between the new human data, the original literal replay 
data, and the flexible replay data to see how faithfully the virtual versions simulate the new 
player population. 

The ideal outcome of these three studies would be a demonstration that the new iterations of the 
game show better alignment between domain principles and instructional feedback than the 
original game. If such a correspondence were found, it would provide evidence that the more 
lightweight virtual playtesting paradigms used in projective replay analysis can be used as a 
suitable proxy for real human playtesting. 
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Schedule 
The schedule that I propose to follow for this work is as follows: 

Event Date 

Propose  May 

Development Work, Studies 1 and 2 Summer 

Study 3 Fall 

Defend Spring 2017 
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