
05433-B/05633-B User Interface Lab (Section B - GUI)

Project 4: My Draw – Using a Display List
due 11:59pm Thursday, October 30, 2014.

Goal
This assignment completes the progress of the previous 2 assignments by adding in the
ability to draw shapes using drag resizing and manipulate them using drag and drop
interactions. The goal of this assignment is to get some experience with more complex user
interactions and play with using a display list paradigm to manipulate interactive graphics.
This assignment will also have you create reusable javascript objects.

For this assignment we will be using a DisplayList class that I have written myself and
provided with this spec. This DisplayList does some of the basic management of graphical
objects, however you will have to write the graphical objects that go into the list. You will
also have to write some additional management functions on top of the DisplayList to
achieve the drag and drop interactions.

Your task is 2 fold:

First, you must translate the drawing functions (square, circle, and star; you are not
required to implement your custom brush) you used in the previous assignment into
graphical object classes. Each graphical object should retain all of the properties it needs to
draw its shape as well as a constructor to initialize those properties. In addition to an object
constructor each object should implement the following 4 function:

1. draw(ctx) – This function should take as a parameter a CanvasRenderingContext,
i.e. the result of calling canvas.getContext(“2d”) and use it to draw the shape
according to its retained properties. For example calling draw(ctx) on a Square
object should result in a square appearing on the main canvas.

2. contains(x,y) – This function should take as parameters the x and y-coordinates
of a point and return true if that point would be inside of the drawn shape, and
otherwise return false. For complex shapes, like the star, it is ok to assume that they
would be contained in an invisible square and return true if (x,y) is contained in
the square, rather than doing complex geometry calculations.

3. moveTo(x,y) – This function should move the graphical object to a new location
specified by the provided x and y-coordinates. You can assume that this (x,y)
positions is meant to be the new center of the shape, as if the user had clicked there
in the painting program.

4. setSize(size) – This function should take 1 parameter specifying its new size. Each
shape can be described by a single size value, as it was in the previous assignment.
For example, the size of a square is its side length, the size of a circle is its radius,
and the size of the star is its edge length. What size specifically changes is up to you
as long as it makes sense.

Secondly, you will need to write a set of management functions which leverage the
DisplayList to accomplish drawing interactions. The expected behavior follows this finite
state machine:

1. Idle state – this is the default state of the program.
a. If the user presses their mouse down on the canvas over an empty part of

the canvas then a new graphical object is created at that point, using the
properties currently selected in the toolbar and made the focus. Then the
program proceeds to the Draw state.

b. If the user presses their mouse down on the canvas over a graphical object
then that graphical object becomes the focus and the program proceeds to
the Drag state.

2. Draw state – this is when a user is dragging their mouse after starting a new shape.
a. As the user drags their mouse the focused shape (the newly drawn one)

changes size according to the distance between the original mouse down
and the current mouse position.

b. If the user releases the mouse then the focus is cleared (set to null) and the
program transitions into the Idle state.

3. Drag state – this is when the user is dragging their mouse after clicking on an
existing shape.

a. As the user drags their mouse the focused shape moves along with the
mouse to a new position. The shape’s position relative to the mouse should
not change as it moves, i.e. the distance between the mouse and the center
of the shape should remain (roughly) constant.

b. If the user releases the mouse then the focus is cleared (set to null) and the
program transitions into the Idle state.

4. Delete state – this is a special state for deleting objects reached by setting the shape
type in the toolbar to delete.

a. If the user presses their mouse down on the canvas over a graphical object
then that graphical object gets deleted from the canvas, i.e. removed from
the DisplayList.

b. If the user sets the toolbar’s shape type to something other than delete then
the program transitions into the Idle state.

As with the previous assignment you should feel free to make any individual changes that
you think would make the program more useful or usable.

Provided Files
As with the previous assignment you should start this project by building off of your
existing toolbar code. You should make some edits to the toolbar to make it more usable
for drawing. Firstly, change the Eraser option to Delete. Secondly, remove the brush size
field. Since users will drag shapes out to whatever size they want the brush size field is no
longer necessary.

The other provided file with this assignment is displaylist.js. This file contains the
specification for the DisplayList class. The DisplayList makes itself available as a global
variable named dl, and has 5 functions:

1. setup(canvas) – this function sets up the DisplayList’s reference to the canvas and
MUST be called before any other function will work. The canvas parameter
provided to this function should be a reference to your main canvas. If setup() is
not called first all other functions will throw errors.

2. addGraphicalObject(go) – this function is used to add a graphical object to the list.
This function assumes that the go object implements the 4 required functions and
will log a warning to the console if it does not.

3. removeGraphicalObject(go) – this function removes a graphical object from the
list and returns the object if it was successful, otherwise it will return null.

4. redraw() – this function clears the canvas and redraws all of the objects in the list
in the order in which they were added. If an object does not have a draw() function
this will throw an error.

5. getObjectContaining(x,y) – this function searches through the list for an object
that would contain the point (x,y). If an object is found it will be returned
otherwise the function will return null. If an object in the list does not have a
contains() function defined this will throw an error.

Hints
• You may find it useful to make multiple javascript files to organize yourself. My

organization looks like this:
o toolbar.js – all of the functions from the previous assignments related to

managing the toolbar, like tracking the mouse coordinates and properly
updating color.

o shapes.js – all of my shape class definitions are here set as global functions
so I can use them elsewhere.

o main.js – the finite state machine that responds to mouse input is here.
• The DisplayList has a number of checks built into it that will display warnings and

errors to the console when it is being used incorrectly. If you have the Netbeans
plugin in chrome the console appears in the output tab of the Netbeans interface.
If you are not using Netbeans the console log can be viewed if you right click on the
page and select ‘Inspect Element’ then go to the console tab.

• The formula to find the distance between 2 points (x1,y1) and (x2,y2) is:
�(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2, you can do square root with Math.sqrt(val) and
square can be accomplished by Math.pow(val,exp) so Math.pow(val,2)

• You will again need to change how window resizing is handled. Every time the
canvas changes size it will need to redraw to the new size.

• Do not name any of your shape classes Rect, various browsers (Chrome in
particular) behave weirdly when you do this because they rely on a hidden class
named Rect. It’s safer to use a name like Rectangle or Square.

Tentative Rubric
A Square graphical object is defined:
 The Square’s draw function is correct: 5 points
 The Square’s contains function is correct: 5 points
 The Square’s moveTo function is correct: 5 points
 The Square’s setSize function is correct: 5 points
A Circle graphical object is defined:
 The Circle’s draw function is correct: 5 points
 The Circle’s contains function is correct: 5 points
 The Circle’s moveTo function is correct: 5 points
 The Circle’s setSize function is correct: 5 points
A Star graphical object is defined:
 The Star’s draw function is correct: 5 points
 The Star’s contains function is correct: 5 points
 The Star’s moveTo function is correct: 5 points
 The Star’s setSize function is correct: 5 points
Mouse down on empty canvas creates a new graphical object with correct
shape and color:

5 points

 Dragging the mouse resizes the shape: 5 points
Mouse down on an existing object makes it a focus: 5 points
 Dragging the mouse moves the focused object: 5 points
 The shape’s center stays a constant distance from the mouse: 5 points
Clicking a graphical object in delete mode removes it: 5 points
Changes done to one graphical object do not affect the others: 5 points
All objects redraw correctly when the window is resized 5 points
Custom shape implemented (based on complexity) Up to 10 bonus points
Interface allows for users to define fill and stroke properties Up to 10 bonus points
Interface visually indicates which object is currently in focus Up to 5 bonus points
Total 100 points

Critical Thinking
You are not required to turn in answers to any of the questions in this section, but we
recommend that you explore and think about some of the questions.

1. Your program now has the backbone of a drawing editor like Adobe Illustrator.
How might you implement more advanced features like layering?

2. Currently the display list erases the canvas and redraws every graphical object when
any one of them changes, potentially leading to lots of unnecessary redrawing. How
might you change the display list so it only draws what it needs to?

Turning it in
Project 4 is due by 11:59pm October 30th, 2014 as a zipped file. Email your file to Erik at
eharpste@cs.cmu.edu. Late entries will be penalized -5% for every late day.

	Goal
	Provided Files
	Hints
	Tentative Rubric
	Critical Thinking
	Turning it in

