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ABSTRACT 
As we design increasingly complex systems, we run up against 
fundamental limitations of human imagination. To support 
practice, it becomes essential to use authentic data and 
algorithms as design materials to augment designers' 
intuitions. Recent work has explored some dimensions of 
using data as a design material, suggesting the contours of a 
new space of design and prototyping methods. In this paper, 
we present Replay Enactments (REs), an extension of the User 
Enactments methods that uses data replay as a boundary 
object, making complex system behavior tangible to designers 
and stakeholders. We reflect on a set of case studies that have 
instantiated REs in diverse ways and discuss trade-offs 
between different ways of using data replays in design. We 
conclude by highlighting opportunities and challenges for 
future work. 
Author Keywords 
Replay Enactments, Design Methods, Prototyping, User 
Enactments, Data Replay, User Experience Design 
CSS Concepts 
•Human-centered computing~Human computer interaction 
(HCI)~HCI design and evaluation methods 
INTRODUCTION 
As we design increasingly complex systems, design teams run 
up against fundamental limitations of human imagination. 
Design teams must envision how adaptive systems might 
behave across a wide range of possible user interactions and 
contexts [8, 18, 36]. Particularly when these systems are 
targeted for global deployment, failures of imagination often 
have unintended consequences, for 
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imagination often have unintended consequences, for example 
where the value provided by adaptive services degrades across 
different groups of users and contexts [18, 30, 33, 38]. When 
designing data-driven AI systems, design teams must also 
envision the impacts of imperfect algorithms, for example by 
anticipating how users will experience the errors a particular 
algorithm makes when fed data from a particular context [8, 
17, 18, 35, 36]. Yet such imperfections are challenging, if not 
impossible, for designers to accurately imagine or 
approximate through simple simulations [8, 35, 36]. How 
might design teams more successfully work with materials 
that defy their capacities for projecting into possible futures? 

User Enactments (UEs) are a set of design methods that help 
teams conduct a fieldwork of the future [26]: In UEs, designers 
construct simulations of possible futures (e.g., through 
immersive physical sets, lo-fi prototypes, and Wizard of Oz 
methods), and invite users to participate in multiple 
enactments of loosely scripted scenarios within these contexts 
[6, 26, 37]. By emphasizing the co-enactment of multiple 
scenarios, each representing an alternative vision for the 
future, UEs can function as a boundary object [29] enabling 
multidisciplinary teams and other stakeholders to explore 
uncharted design spaces together [26]. In UEs designers use 
Wizard of Oz (WoZ) methods and role-playing to enact the 
behavior of novel technologies or to simulate future social 
contexts. Yet designers often struggle to imagine the behavior 
of complex algorithmic systems before they are actually 
deployed [3, 8, 17, 18]. In the wild, a system’s behavior can 
depend heavily on interactions between particular data-
generating contexts (e.g., specific socio-cultural settings 
where a system may be used) and particular algorithms (e.g., 
specific AI models trained on specific datasets that encode 
specific biases). 

To aid designers in bridging this gap, we present Replay 
Enactments (REs), an extension of the User Enactments 
methods that uses data replays [12, 17, 23, 24] to make 
complex system behavior tangible to designers and 
stakeholders. Like UEs, REs allow people to sample multiple 
possible futures via brief enactments of scenarios within a 
staged or simulated context. However, in REs designers  



 

 

 
Figure 1. Nested components of a Replay Enactments study, each 
of which can be swapped out during or between sessions to 
explore different combinations of data-generating contexts, 
system behaviors, and scenarios (figure adapted from [17]). 
 

construct these simulations via replays of previously collected 
data from the field (e.g., metadata from social media profiles 
or log data from classroom use of educational technologies). 
These data replays may be enacted either by human wizards 
who interpret and react to incoming data as it is replayed; by 
low-fidelity algorithms [35, 36] that approximate the way an 
eventual system might behave; or by high-fidelity algorithms 
[14, 17] representing the actual material with which designers 
will shape a system’s algorithmic behavior [1, 3, 36]. The 
nested components of a RE study, illustrated in Figure 1, can 
be swapped out during a session to explore different 
combinations of data-generating contexts, system behaviors, 
and user tasks or scenarios. Thus for example, across multiple 
enactments, designers may explore the same user scenario 
using data collected from different contexts, or using different 
choices of algorithms. 

In this paper, we first situate REs in relation to existing design 
research methods and discuss their use of data replays as a 
material. We then present three case studies from our own 
research, illustrating diverse uses of REs: the Retrospect, 
Lumilo, and RumbleBlocks projects, each of which is 
previewed briefly below. 

The Retrospect project explored potential futures where a 
system might help people manage, curate, and reflect on the 
digital information generated over the course of their lives. 
Designers observed participants’ responses to various, 
alternative re-enactments of participants’ own data (scraped 
from their social media accounts). Here, the use of authentic 
personal data enabled participants to reason from their own 
experience in evaluating ways in which their data might be 
understood and used in the future, while in turn enabling 
designers to observe nuances that they may not have otherwise 
imagined into fictional data. 

The Lumilo project engaged K-12 teachers in iteratively 
shaping the behavior of data-driven AI systems for use in their 
classrooms. Here, the goal was to make the experience of 
working with imperfect algorithms tangible to stakeholders, 
via immersive simulations of the way these algorithms would 

behave in different classroom contexts. During a study, 
teachers experienced a simulated class session based on 
replays of classroom field data, filtered through the kinds of 
data-driven algorithms that might eventually be used in a 
deployed system. The use of authentic data and algorithms 
provided designers early insight into how teachers’ 
experiences were shaped by the interplay of particular 
algorithms and classroom contexts. Meanwhile, these 
simulations enabled teachers to experiment with different 
algorithmic design decisions and experience the consequences 
of these decisions. 

Finally, the RumbleBlocks project helped designers both 
retrospectively understand players’ experience in an 
educational game and projectively explore the implications of 
particular game design alterations on the player experience. 
Unlike the Retrospect and Lumilo case studies, where human 
participants engaged in co-enacting the scenarios, here the 
enactments were fully machine- performed. In the 
retrospective case, historical gameplay data were re-enacted to 
materialize the dynamics of an educational game and allow 
designers to examine the same sessions from multiple 
analytical perspectives. In the projective case, historical 
gameplay data was used to simulate the impacts of potential 
design changes, to help designers evaluate whether the 
resulting state of the game would be preferred to the current 
one. 

Drawing upon these case studies, we conclude with reflections 
on how and when to use REs, highlighting opportunities and 
challenges for future work. 

REPLAY AS A META-MATERIAL IN DESIGN 
A core contribution of this work is the positioning of data 
replays as a useful meta-material in the design process. By this 
we mean that data replays, as concrete abstractions of specific 
user experience and context, can be re-enacted to provide 
designers a lens on a potential future user experience. They are 
a meta-material in the sense that the data replay is not the 
material object of the design process directly but rather the 
means to materializing the real object of design. By 
manipulating what aspects of data are being replayed and how 
the replay is being executed and interpreted, the designer can 
explore the material implications of design choices. 

Across our three cases, we have used data replays to support 
each phase of an iterative design process, from observation to 
ideation to iteration [6]. The use of replays supports both 
observation and ideation by allowing designers and 
participants to experience data collected from the field in new 
ways. Through multiple enactments of the same interaction 
traces, data replays enable multiple re- experiences and re-
interpretations of the same set of field observations [10, 14], 
using different abstractions to make different aspects of an 
experience more or less salient [12, 16]. In addition, the use of 
data replays supports ideation and iteration by making 
complex system behaviors tangible.  

 



 

 

 
Table 1. Comparison of Replay Enactments and closely related approaches (rows), along four defining properties (columns). 

Through REs, designers and other stakeholders can rapidly, 
iteratively explore the UX implications of otherwise opaque 
design decisions (e.g., choices of data, AI models, or 
parameter settings) by playing out the impacts of a change and 
materializing the results [17, 36]. 

Table 1 presents four defining properties of REs, contrasting 
against related approaches including technology field 
deployments (e.g., [20, 25]) and prior enactment- based 
approaches that help teams explore potential futures in staged 
environments. In the latter category are the WoZ-based User 
Enactments (UEs) approach, described above, and the 
improvisation-based Speculative Enactments (SEs) approach 
[9]. Drawing upon UEs and speculative design, SEs is an 
approach aimed at engaging study participants in speculative 
yet personally consequential circumstances. Unlike UEs, SEs 
minimize the use of WoZ methods or scripting of interactions, 
instead prioritizing the creation of conditions for genuine 
social interactions to unfold among participants. As such, SEs 
rely more heavily on participant improvisation within the 
broad premises of a given speculative future. Unlike UEs and 
REs, which emphasize the exploration of many possible 
futures via multiple brief enactments (see Multiple brief 
enactments in Table 1), the SEs approach favors fewer and 
longer enactments with the goal of fostering deeper participant 
investment in particular futures [9]. 

Both SEs and the WoZ-based UEs approach, in which human 
actors may imagine and enact possible machine behaviors, can 
be useful in rapidly exploring broad, uncharted design spaces 
earlier on in the design process. For example, an early UE 
study [6, 37] explored a diverse range of smart home concepts, 
embedded in different household scenarios, to help designers 
anticipate parents’ desires and boundaries regarding a smart 
home’s roles within family life. Since both the behavior of a 
potential system and the surrounding context in UEs and SEs 
are animated by the designers and participants themselves, 
they are free to imagine any number of possible interactions, 
including ones that are not (yet) feasible with existing 

technologies. However, while these wider potential futures are 
afforded by imagination, they are also bounded by it.  

WoZ or improvisation-based approaches alone may fail to 
capture real world dynamics that are critical to a user’s 
experience. For example, human wizards and actors may not 
accurately imagine the nuances of authentic family 
interactions and routines in the home [8, 17] (see Authentic 
field data in Table 1). Further, even when WoZ is successful 
in convincing participants that they are interacting with a 
machine, human wizards may fail to enact realistic machine 
behavior, limiting what designers are able to learn from a 
study. In particular, WoZ can fail to represent the behavioral 
complexity of data-driven algorithmic systems, such as the 
patterns of inference errors that an actual smart home might 
make [8, 17, 36]. As discussed in recent work on AI as a design 
material, when designing complex algorithmic systems, it 
may become necessary to explore the material properties of 
actual algorithms earlier on in the design process (e.g., [3, 8, 
17, 35, 36]). This may be achieved by moving from fully 
human-performed enactments, as in UEs and SEs, towards 
approaches where machine behaviors are enacted (at least in 
part) by actual machines (see Co-enactment by humans + 
machines in Table 1).  

While each of these aspects – real world field dynamics and 
algorithmic behavior – can be explored by developing and 
deploying technologies in actual field contexts, field 
deployments can be costly and may limit the extent to which 
design teams can freely explore and iterate (see Staged or 
simulated field context in Table 1). REs can be used to bridge 
the gap between UEs or SEs and technology field 
deployments, reducing risk as designers make the leap from 
prototyping semi-scripted system behaviors in semi-controlled 
contexts to prototyping complex system behaviors in messy 
and diverse field contexts. For example, in the Retrospect case, 
the use of participants’ personal data within the context of a 
RE study helped users of the system to reflect on personal 
experience without feeling as if their privacy had been 
violated.  



 

 

 
Figure 2. A continuum of methods for exploring possible futures, in two dimensions: The horizontal axis represents the extent to which 
the task of anticipating designed systems’ behavior and real-world impacts is informed by actual field data and algorithmic behavior 
(right), versus being imagined (left). The vertical axis represents the extent to which scenarios are enacted by human participants (top) 
or by machines (bottom). As design teams converge towards technology field deployments, scenarios increasingly unfold through an 
interplay of human and machine behavior. This is illustrated by a narrowing of the possibility space moving towards the right of the 
diagram (grey boundaries) towards socio-technical enactment: real humans interacting with real technologies in real social contexts. 
Replay Enactments (REs) occupy a middle region of this space, between purely WoZ- or improvisation-based approaches and technology 
field deployments. Shown in blue: The three case studies presented in this work. 

While this differs from a real-world study, designers were able 
to weigh the benefits and tradeoffs of combining personal data 
that were otherwise siloed over a number of sources. 
Similarly, in both the Lumilo and RumbleBlocks cases, a key 
motivation for using REs was to anticipate the real-world 
impacts and behavior of complex algorithmic systems, where 
moving straight ahead to a field deployment was viewed as too 
risky. Even after a field study, REs can be used to enable 
continued iteration outside the constraints of the field, as in the 
RumbleBlocks case.  

By reflecting on diverse instantiations of Replay Enactments 
in this paper (cf. [17]), we intend to open up a middle space of 
prototyping methods, between purely WoZ- or improvisation-
based approaches and technology field deployments. Both 
REs and technology field deployments tend to require greater 
upfront technical investment than UEs or SEs. However, as 
with technology probes [20], artefacts developed for REs are 
primarily intended as tools for design exploration, rather than 
as fully-fledged prototypes. As shown in Figure 2, specific 
instantiations of the REs approach can span a range of 
locations within this middle space. In navigating this space, 
design teams face trade-offs between flexibility and realism.  

As design teams move further towards the right of the space, 
prioritizing authenticity, they are better able to ground their 
speculations about possible futures in the dynamics of 
particular real-world contexts and the limitations of actual 
algorithms. At the same time, moving further towards the right 
side may increasingly anchor and limit the kinds of futures that 
can be envisioned to those contexts and algorithmic 
capabilities that exist now – potentially at the cost of 
envisioning futures that diverge more radically from the 
present. 

REs towards the left in Figure 2, prioritizing flexibility, may 
involve enacting scenarios based on authentic data from the 
field (e.g., previously collected interaction traces) but without 
necessarily using authentic algorithms. Such REs may be 
enacted either by human wizards who interpret and react to 
replayed data (see Discussion), or by “low-fidelity” versions 
of the kinds of algorithms that may eventually be fielded (e.g., 
simple rule-based simulators intended to approximate the 
behavior of machine learning systems [36]). When it is 
important to prototype realistic algorithmic behavior (as in the 
Lumilo case), REs towards the right of Figure 2, using both 
authentic data and algorithms, may be most informative. 
Similarly, as design teams converge towards deploying 
technologies in actual field contexts – where scenarios will 



 

 

evolve through an interplay of human and machine behavior 
(see grey boundaries in Figure 2) – it may be increasingly 
important for REs to engage human participants in co-
enacting scenarios [17] with machines (as in the Retrospect 
and Lumilo cases).  

In positioning data replays as a meta-material, we see Replay 
Enactments as supporting an expansion of the craft orientation 
to HCI design process [21, 34]. Rather than moving away from 
a designerly approach, introducing authentic data and 
algorithms offers designers the ability to reify user experience 
into a material form that they can see and converse with [8, 30, 
35, 36]. 

CASE STUDIES 
In the following sections, we reflect upon experiences 
conducting REs across three of our own projects, which have 
instantiated the method in diverse ways. 
Retrospect: Building User Enactments from Metadata  
In this project, Gulotta et al. expanded upon the User 
Enactments methods to create a demonstrational prototype 
called Retrospect [10]. Retrospect was designed to reflect 
potential futures where a system might help make sense of, 
manage, and represent the digital information generated over 
the course of one’s life (Figure 3). Examining these issues is 
challenging because few systems can gather or analyze 
information on this scale or for this purpose. 

Digital systems capture an increasingly large and significant 
portion of people’s life experiences. It is important to consider 
how people navigate the processes of managing, curating, and 
reflecting on that information. The field of personal 
information management has attempted to develop systems 
and practices to help people better manage and locate pieces 
of digital information. However, personal digital information 
is idiosyncratic and fragmented across identities and services. 
The Retrospect project expanded upon efforts in personal 
information management to explore how people might 
manage, curate and archive records that span across lifetimes 
and generations. 
Enactments 
Retrospect relied on metadata about participants, scraped from 
social media. We explored two categories of metadata: (1) 
person-generated metadata, such as comments on a Facebook 
post, and (2) system-generated metadata, such as the number 
of times a song has been played. Metadata is one of the main 
sources of information that systems capture about users and 
leverage to make decisions about what information to share 
with those users. However, the degree to which users are 
aware of having contributed this data greatly influences how 
they perceive system actions. 

The goal in this study was to scrape participants’ personal data 
to use in familiar scenarios, to help participants reason from 
their own experience in evaluating Retrospect. After the initial 
set up, Retrospect was used by participants for two and a half 
months. Each week, participants engaged in reflective tasks 
prompted by Retrospect. Across a series of interviews that 

 
Figure 3. Illustration of one potential design for Retrospect, which 
combined personal data across multiple sources, using locations 
from a person’s past as a resource for reflection [11]. 
 

took place across the duration of the study, designers observed 
participants’ responses to alternative ways of re-enacting 
participants’ own data. 

The use of authentic personal data enabled participants to 
more sensitively consider how users understand the quality 
and texture of the many different types of digital information 
to which they are connected. Additionally, variations in the 
data (e.g. when it was originally created, what kind of 
information it was, what part of one’s life the data reflected), 
prompted participants to imagine how future systems might 
make use of the wide range of data about their lives, behaviors, 
and experiences. In turn, this enabled designers to observe 
nuances which they may not otherwise have imagined into 
fictional data.  

Though a number of data sources were considered, the 
Retrospect study utilized a participant’s Facebook’s data. 
Facebook’s API functionality was well documented and there 
was a large group of developers using the API. The popularity 
of Facebook helped ensure that adequate data could be 
scraped, and that Retrospect would have access to data in both 
the near and distant past. This decision resulted in constraints 
for the design of the Retrospect system [10, 11] but served as 
an entry way for participants to reflect on the great variety of 
data available about them online.  
Reflections 
Conducting REs with participants’ personal data enabled 
designers to observe participants’ responses to various, 
alternative re-enactments of this data. A key aspect of 
Retrospect was that it prompted users to reflect on pieces of 
digital media and information from different parts of their own 
lives. Interviews with participants revealed that few of the 
participants engaged in deliberate, unprompted revisitation of 
their digital content without Retrospect. Participants liked how 
Retrospect eliminated the step of hunting for old content on a 
variety of volumes such as external hard drives or obsolete 



 

 

phones. Many of the participants enjoyed having the time and 
motivation to revisit aspects of their past. Interestingly, no one 
expressed negative sentiment about the use of disparate bodies 
of personal information to create the Retrospect system. The 
design team found that using participants’ personal data in this 
way allowed for deeper personal reflection. The addition of 
design features beyond those expressed through the scraped 
data helped to create a personalized and meaningful 
experience. 

While these REs were constructed from authentic historical 
data, exploring the UX of authentic data-driven algorithms 
was not a major goal of this study. Thus, the Retrospect 
project’s REs were slightly further from a technology field 
deployment, in terms of technical realism, than the cases we 
present next (see Figure 2’s horizontal axis). Along the vertical 
axis in Figure 2, the Retrospect study falls near the center: 
while the prototype re-enacted participants’ personal data, 
participants played active roles as users of the system. 

Lumilo: Co-shaping data-driven algorithmic behavior 
Our second case study involves the use of REs to engage K-
12 teachers in iteratively shaping the behavior of data-driven 
AI systems [15, 17]. Here, the goal was to make the experience 
of working with imperfect algorithms tangible to teachers, via 
immersive simulations of the way these algorithms would 
behave in specific contexts. Thus, it was important not only to 
use authentic data in these REs, but to enact replays of this data 
through the kinds of data-driven algorithms that might be used 
in an actual fielded system. 

Holstein et al. used REs to iteratively prototype a real-time 
decision-support tool for K-12 teachers called Lumilo [16]. 
Lumilo is a set of mixed reality smart glasses designed for use 
in self-paced classrooms where students work with AI-based 
tutoring systems [4, 28]. As a teacher walks throughout the 
room while wearing Lumilo, they can see real-time indicators 
about students’ learning, metacognitive, and behavioral states, 
floating directly above students’ heads [2, 17]. The underlying 
constructs behind these real-time indicators (e.g., whether a 
struggling student is facing productive difficulties versus 
genuine roadblocks) were selected through a co-design 
process with teachers, with the goal of alerting teachers to 
unfolding classroom situations that may benefit from human 
intervention. Many different algorithmic approaches have 
been proposed in the literature to measure each of these 
constructs [7, 17]. However, the “matchmaking” process 
between algorithms and teacher needs was far from 
straightforward, and the use of these algorithms for teacher 
decision-support was an uncharted design space at the start of 
the project. 

Enactments 
Fielding prototype systems in K-12 settings risks causing harm 
to students if the prototype’s effects are poorly understood. To 
rapidly prototype the experience of using Lumilo prior to a 
risky pilot in actual classrooms, the design team made use of 
data replays, based on previously recorded software log data 

 
Figure 4. Screenshot showing a teacher’s point of view during a 
RE study with Lumilo. Logged interaction data from a full class 
of students is replayed, at original speed, through AI tutor 
interfaces on separate computers in the lab; corresponding 
indicators update in real time through the glasses. Teacher 
dialogue is displayed at the bottom: in the midst of an enactment, 
this teacher notices they have begun talking to students as if they 
were actually present. 
 

from classrooms working with AI tutoring systems. These data 
were available in LearnSphere, a major repository of 
educational data, intended for use by researchers and data 
scientists in conducting offline quantitative analyses [19, 27]. 
In this case, the team appropriated these existing classroom 
data for use in Replay Enactments. 

The designers brought middle school math teachers into 
computer labs on their university’s campus to participate in 
RE sessions. In each study session, the teacher wore the 
Lumilo smart glasses while a 40-minute class session was 
replayed from beginning to end, at actual speed. On each 
computer monitor in the lab, a different student’s actions were 
replayed through the AI tutoring software. Through the Lumilo 
prototype, teachers saw mixed reality indicators floating above 
each empty seat, updating in real time.  

Teachers were asked to pretend that this was an actual class 
session, role playing and thinking aloud while they moved 
throughout the lab space (see Figure 4). If a teacher thought 
they might focus their attention on a particular student at a 
particular moment, based on the information they saw, they 
were instructed to verbalize what they might say to that student 
if the student were actually there [15, 17]. 

When iteratively prototyping Lumilo with teachers, the same 
iteration of Lumilo’s design was frequently tested across 
replays of datasets from a range of classroom contexts (e.g., 
remedial versus gifted classrooms) while holding the choice of 
algorithms constant, or vice-versa (see Figure 1). During a 
session, a human “wizard” would make live changes to 
algorithmic elements of a system’s design based on 
stakeholder feedback. In an iterative fashion, the wizard would 
elicit design feedback, make small adjustments (e.g., tweaking 
parameters in a machine- learned model), and allow 
stakeholders to experience the consequences of their requested 
changes. 



 

 

Reflections 
Conducting REs with authentic data and algorithms enabled 
insights into how participants’ subjective experiences are 
shaped by the interplay of particular algorithms (e.g., specific 
machine learning models trained on specific student datasets) 
and data-generating contexts (specific kinds of classroom 
environments from which data were collected). For instance, 
prototyping sessions with Lumilo revealed that under 
particular classroom dynamics, but not others, teachers 
experienced the patterns of errors made by particular choices 
of algorithms as anxiety-inducing [15]. In addition, these REs 
provided early insight, before entering the field, into the 
effects that different algorithm design choices might have on 
teachers’ behavior. In this case study, the use of data replays 
removed the possibility that teachers’ behavior could 
influence the replayed students (thus removing the possibility 
of causal feedback loops). Thus, the team was able to collect 
and analyze data on teacher behavior in RE sessions to 
investigate Lumilo’s effectiveness in steering teachers’ 
attention towards students most in need of help in-the-
moment. 

As in the Retrospect case study, these REs engaged human 
participants in co-enacting scenarios together with 
technological components (see Figure 2). Given that the user 
task in this case – monitoring a classroom and guiding students 
– is highly embodied and interactive, Lumilo’s REs 
emphasized physical enactments and role playing exercises in 
the spirit of the UE approach [17, 26, 37]. The instantiations 
of REs we have discussed in the Retrospect and Lumilo cases 
both focus on exploring alternative re-enactments of historical 
interaction data. Our next case study expands beyond this 
paradigm: in addition to re-enacting past data, the 
RumbleBlocks case leverages models of these data to aid 
designers in imagining other plausible user behaviors and 
system dynamics. 
RumbleBlocks: Projecting Playtests into Alternate 
Futures 
Our third case study explores the use of REs to both 
retrospectively understand the player experience in an 
educational game and projectively explore the player 
experience implications of changes to the game’s design. The 
case centers on the iterative evaluation and design of 
RumbleBlocks (see Figure 5), an educational game intended to 
teach young children concepts of structural stability and 
balance by having them build block towers that have to survive 
earthquakes [14]. The complex algorithmic design challenge 
in this case was dealing with the indeterminacy of the game’s 
physics engine, which was used to evaluate players’ solutions. 
Given the educational purpose of the game it was important to 
ensure an alignment [13] between the feedback students 
received and the stated principles the game was teaching by 
tuning properties of the physics system and other mechanics 
of the game. 

In a traditional game design setting this alignment would be 
achieved through extensive iterative playtesting [5]. Given the 

 
Figure 5. A screenshot of a level from the RumbleBlocks game 
(left) and a visual representation of four different player solutions 
for this level (right). In the replays, non-essential game elements 
were hidden, and each free-standing tower was color coded to aid 
in interpretation. 
 

 

teducational goals of the game, it was important to the 
designers that this testing be done with children in the target 
demographic so as to design against realistic learner 
misconceptions. However, exploring several iterations of 
game mechanics with a realistic player population in a realistic 
classroom setting would place a substantial burden on local 
schools by organizing many disruptive classroom playtests. 
Thus it was important for the designers to be able to explore 
realistic player behaviors and corresponding game responses 
for a wide range of possible mechanics outside of the field, 
while still being informed by it.  
Enactments 
In this project REs were used to augment the value of the 
limited window of data afforded by rare and costly classroom 
playtests. The data for the REs was gathered during an initial 
field trial of RumbleBlocks that was done to gauge its 
educational effectiveness [12, 13]. This field trial involved in 
vivo classroom playtests of the game with 281 students across 
the games’ K-3 (5-8 year-old) target demographic in two local 
schools. In addition to assessment instruments used for 
evaluation purposes, each student’s gameplay session was 
recorded as a replay trace that could be simulated in the game 
engine after the testing session. 

REs were used in 2 distinct phases in this work. The first phase 
was to perform REs retrospectively to help the designers 
observe the current state of the game’s design. In this 
retrospective phase the replay engine used to re-enact game 
sessions was instrumented to produce data for various game 
analytics techniques. For example, calculating metrics from 
player solutions to measure whether following target 
principles corresponded to success in the game [14] or 
abstracting player solutions into build patterns to observe 
different ways players approached game levels [13]. This 
allowed the designers to reframe the in-class playtests in 
multiple ways to consider whether the current design 
supported their instructional goals. In doing so, they found that 
the way the game evaluated player solutions to in-game 
puzzles was often skewed by micro-faults in the solution 



 

 

rather than capturing holistic physical properties, which was 
the instructional goal of the game [12]. 

After discovering faults in the game using retrospective REs, 
the designers of RumbleBlocks considered several potential 
design solutions to the issues they observed. This led to a 
second phase of the work where the REs were used 
projectively to simulate the impacts of potential design 
changes and consider whether the resulting state of the game 
would be preferred to the current one. In this context, 
projective REs leveraged the existing replay data as the basis 
for an AI player model of how a target user population would 
react to the current design. They then leverage the affordance 
of a replay environment to project that model onto an iterated 
version of the original game to help designers anticipate how 
players might play the new version differently.  

In these projective REs, not only is the product itself simulated 
but so is the user population. A key commitment of this 
approach was to rely on a cognitive architecture designed to 
replicate the human learning process [22], which presents 
similar imperfections to a human learning something for the 
first time, rather than a superhuman AI approach [32]. In this 
way the approach attempts to create a middle space between 
running authentic, but disruptive, playtests with new users, 
versus entirely theoretical simulation techniques, uninformed 
by actual human performance or context. 

Reflections 
In the work on RumbleBlocks, projective REs supported rapid, 
divergent iteration of the game. In a particularly salient 
example, the technique was able to catch a subtle problem with 
one redesign’s scoring mechanic where players would fail 
levels without a clear sense of why their solution was wrong 
[12]. While these issues might have turned up in playtests with 
human players, and indeed did in some cases, the designers 
were able to explore many more design concepts than they 
would have been able to with classroom playtests alone, given 
logistical constraints. 

Unlike the Retrospect and Lumilo case studies, where human 
participants engaged in co-enacting scenarios, here the 
enactments were fully machine-performed (falling towards the 
bottom of the vertical axis in Figure 2). The RumbleBlocks 
case is also unique in that, in addition to re-enacting past data 
directly, designers leveraged generative models machine-
learned from these data to more flexibly explore possible 
futures. In this sense, RumbleBlocks' REs fall to the left of 
Lumilo's REs along Figure 2's horizontal axis, providing 
designers greater flexibility at the risk of trading off some 
realism. 

TRADE-OFFS AND LIMITATIONS 
The Retrospect, Lumilo, and RumbleBlocks case studies 
illustrate three points within a broader space of methods that 
use data replays to support design. Across these cases, Replay 
Enactments supported design teams in bridging the often large 
gap between prototyping semi-scripted system behaviors in 
semi-controlled contexts (e.g., through conventional User 

Enactments) to prototyping complex system behaviors in 
messy and diverse field contexts. In the following, we discuss 
major trade-offs across this space of methods, reflecting on 
where particular approaches may provide the most value. 

Flexibility versus Realism 
Design teams face challenging trade-offs as they navigate the 
methodological space shown in Figure 2. Towards the left end 
of this space, characterized by WoZ and improvisation-based 
approaches, designers have the most flexibility. Since both the 
behavior of a potential system and the surrounding context are 
animated by the designers themselves, they are free to imagine 
any number of possible interactions, including ones that are 
not (yet) feasible with existing technologies. At the same time, 
while these wider potential futures are afforded by designer 
imagination, they are also bounded by it. For instance, a 
designer’s capacities for imagination will be limited by their 
own prior background and experience. Data-driven products 
and services often encode assumptions reflecting the 
demographics of the design team, which can have unintended 
consequences when designing for a global context [18, 30, 33, 
38]. 

REs can help to augment design teams’ capacities for 
imagination, as well as those of other participants who are 
engaged in these enactments. In cases where a design team 
does not have immediate or sustained access to particular 
groups of stakeholders who will use or be affected by a new 
technology, replays of recorded experiences from these groups 
can provide a partial window into these stakeholders’ needs. 
For example, through retrospective REs, design teams might 
use a targeted sample of data from an underrepresented 
population to sensitize themselves to the experiences of 
members of that group within their product. Today this type of 
work is often done using personas, which do not have the same 
capacity to evoke the complex emotions, behaviors, and 
insights as re-enacting a person’s actual data.    

Although REs can augment and extend design teams’ 
imaginative capacities as discussed above, the method’s 
reliance upon existing data and algorithms can be limiting in 
other ways. As teams allow their enactments of possible 
futures to be guided by authentic data and algorithms, the 
kinds of futures they are able to envision may be increasingly 
anchored to (and limited by) current algorithmic capabilities, 
user interactions, and field dynamics [8, 12, 17]. The realism 
and nuance this affords comes at the cost of exploring futures 
so radically different from the present that assumptions of 
existing data and algorithms break down – a strength of User 
Enactments and related methods such as Speculative 
Enactments. One way of balancing these trade-offs may lie in 
projective replay approaches, as in the RumbleBlocks case, 
which aid designers in more flexibly generalizing patterns 
from historical data to new situations. Another approach may 
be to develop hybrid approaches that combine the flexibility 
of human wizards and actors with the realism of data replays 
(see Future Directions). 
 



 

 

Technical Investment and Constraints 
In contrast to conventional UEs, which support design teams 
in investigating a wide range of alternative concepts early on 
in the design process, the RE case studies presented above 
explored comparatively narrower design spaces. One reason 
for this is that the infrastructure necessary to produce an 
interactive replay of data requires a level of upfront technical 
investment that constrains the design space in particular 
directions.  

In each of our three case studies, the team needed to instrument 
prototypes so that they could be controlled through historical 
interaction data. The process was constrained by the 
availability of authentic data capable of representing realistic 
user behavior, as well as the availability of a palette of existing 
algorithms that may provide desired functionality. For 
example, after committing to the use of the Facebook API as 
a data source, the Retrospect RE study was necessarily scoped 
to exploring alternative ways of re-enacting participants’ 
Facebook data as opposed to other authentic data sources. To 
work around this issue, interviews with participants used this 
Facebook data as a starting point for discussions about the 
other types of data captured by other systems.  Similarly, after 
committing to the use of classroom interaction data from 
LearnSphere, the Lumilo RE study was scoped to exploring a 
palette of existing student modeling algorithms that were 
compatible with this data source. Such technical investment 
and constraints may be undesirable at the earliest stages of a 
design process. However, as discussed in recent work on data 
and AI as design materials, when designing complex 
algorithmic systems, it may be necessary to commit to such 
technical investment slightly earlier in the process, to reduce 
risk before introducing such systems into real world field 
contexts (e.g., [3, 8, 17, 35, 36]). 

The specific level of technical investment required to conduct 
an RE depends on a design team’s goals, and which aspects of 
a potential future experience the team wishes to materialize. In 
some cases, it may suffice to conduct REs with historical 
interaction data, but without necessarily using the kinds of 
algorithms with which designers will shape a system’s 
algorithmic behavior [1, 3, 36]. For example, in the Retrospect 
case, the primary goal of using authentic personal data was to 
help participants reason from their own experiences, and to 
help designers observe nuances in the enactment and 
experience of actual data which they may not otherwise have 
imagined into fictional data. In other cases, a central goal may 
be to materialize the behavior and impacts of actual 
(imperfect) algorithms, as in the Lumilo and RumbleBlocks 
case studies. In such cases, conducting REs with 
approximations to the actual design material (e.g., using 
simple rule-based simulators to approximate statistical 
machine learning algorithms) can prove insufficient [30, 35, 
36].  

FUTURE DIRECTIONS 
The discussion of methodological trade-offs above suggests a 
broader space of methods that might productively (1) combine 

advantages of WoZ approaches with the advantages of using 
authentic data and/or algorithms, or (2) combine advantages 
of field studies with advantages of REs. Possibilities within 
each of these directions are briefly discussed below, spanning 
less-explored regions of the methodological space shown in 
Figure 2. 

Exploring Human–Replay Hybrid Approaches 
New hybrid approaches might engage human wizards in using 
replays to inform their own enactments, while still retaining 
the ability to flexibly improvise beyond these data. For 
example, a human wizard might monitor data replays in real-
time, using authentic data and algorithmic behavior to inform 
manual enactments of system behaviors. Alternatively, rather 
than having replays play a backstage role, human–replay 
hybrid approaches may involve collaborative enactments 
between human wizards and replay agents. For instance, an 
extension of the approach taken in the Lumilo case study might 
occupy some seats in the computer lab by human actors 
(playing the role of students), while populating the rest of the 
class with replays of historical student interactions. Compared 
with a fully replay-based approach, this combination of 
multiple human and replayed participants in an enactment may 
enable design teams to more effectively explore social 
interactions among multiple participants (a strength of User 
Enactments and Speculative Enactments). At the same time, 
the use of replayed field data may capture nuances in the 
dynamics of real-world classrooms, which may not be 
reproduced by actors placed in an artificial environment (e.g., 
patterns across multiple students’ interactions in real 
classrooms that arise due to genuine social ties among students 
[16, 25]).  

Combining both human and replayed participants may enable 
design teams to conduct User Enactments with larger systems 
of users than would otherwise be practical (e.g., classrooms of 
20-40 students, where it may be impractical to bring all 
participants into the lab). As another example of an approach 
in this methodological space, multiple human wizards may 
work collaboratively to enact realistic behavior of individual 
components of a complex algorithmic system, potentially in 
collaboration with actual algorithmic components. For 
example, Yang et al. [35] involved multiple human wizards in 
enacting the roles of different components in a generative 
neural network. Each wizard would generate specific kinds of 
outputs, which were then combined via an algorithm that 
assigned different weights to each wizard. In doing so, the 
system of wizards was able to simulate different kinds of 
realistic output errors. Further exploring how WoZ methods 
might be combined with authentic data and algorithms 
represents a fruitful direction for future work. 
Extending Fieldwork through Replay Enactments 
Another promising direction involves combining the 
affordances of REs with those of field studies. For example, a 
design team might re-enact trace data from a field study, 
conducting REs with participants from the original study 
shortly following the study’s conclusion. In addition to 



 

 

supporting retrospective contextual inquiries in cases where 
interruptions to live field scenarios would be undesirable, 
these field “follow-up” REs could support designers and 
participants in envisioning alternative futures (while important 
contextual details from their original field experience remain 
fresh in memory) [15, 16]. 

REs may also be used to provide a richer window into 
experiences that would be challenging or infeasible to study in 
live field contexts. For example, in cases where running 
multiple field studies would be costly or ethically fraught, 
design teams may instead explore multiple alternatives via re-
enactments of the same set of field data. Similarly, where 
observations of a particular user group are rare, projective 
forms of REs (as in the RumbleBlocks case) could be used to 
amplify the experiences of the population – simulating how a 
system might behave for similar users even if none have ever 
had a particular experience. 

Finally, a further direction for future work is to stretch the 
value of field data by exploring the material properties of 
replays themselves. While we have thus far considered replays 
as abstractions of whole user experiences, there is no 
requirement for them to maintain their wholeness. As data 
recordings, they can be just as freely manipulated and remixed 
as the systems they are recorded in. This affordance of replay 
could enable designers to explore the potentials of interleaved 
experiences: stitching together segments of recorded 
experience across multiple users or contexts to construct new 
trajectories that are nonetheless grounded in real experiences. 
Similar to projective replays, such an approach could enable 
designers to further probe the outer edges of a design space 
and interrogate the limits of the possible, while still leveraging 
historical data to augment what they are able to imagine. 

CONCLUSIONS 
In this paper we have presented Replay Enactments as an 
extension of the User Enactments methods. These techniques 
leverage data replays as a meta-material in the design process, 
to provide a window into possible future user experiences with 
complex algorithmic systems. The use of data replays can 
support designers and other stakeholders in playing out the 
implications of particular algorithmic design decisions across 
diverse potential field contexts. Collectively, we view this 
work as mapping out the contours of a “middle space” of 
prototyping methods – between purely WoZ- or 
improvisation-based approaches and technology field 
deployments – that use authentic data and algorithms to 
support design craft in an increasingly complex and connected 
landscape. 
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