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ABSTRACT 
Intelligent tutoring systems (ITSs) have consistently been 
shown to improve the educational outcomes of students when 
used alone or combined with traditional instruction. How-
ever, building an ITS is a time-consuming process which re-
quires specialized knowledge of existing tools. Extant author-
ing methods, including the Cognitive Tutor Authoring Tools’ 
(CTAT) example-tracing method and SimStudent’s Author-
ing by Tutoring, use programming-by-demonstration to allow 
authors to build ITSs more quickly than they could by hand 
programming with model-tracing. Yet these methods still suf-
fer from long authoring times or diffculty creating complete 
models. In this study, we demonstrate that Simulated Learn-
ers built with the Apprentice Learner (AL) Framework can 
be combined with a novel interaction design that emphasizes 
model transparency, input fexibility, and problem solving con-
trol to enable authors to achieve greater model completeness 
in less time than existing authoring methods. 
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INTRODUCTION 
Intelligent tutoring systems (ITSs) are a type of computer-
ized educational technology which tutor students through scaf-
folded practice problems and provide correctness feedback, 
next-step hints, and adaptive feedback messages [27]. ITSs 
also typically track student knowledge at a granular level to 
intelligently pick practice problems that will help students 
learn new skills [5]. In several studies ITSs have been shown 
to beneft learners when used alone or in combination with 
traditional instruction [7, 24, 25, 12]. 
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ITSs are, however, notoriously diffcult and time consuming 
to build [22]. For example, consider the case of an author 
creating and ITS to teach multi-column addition. To build 
a model-tracing version of this ITS, a type of ITS built by 
programming production rules that encode a space of correct 
student solution paths, a programmer would need to write 
production rules for adding numbers, carrying 1’s digits and 
putting their answers into appropriate interface felds. Typi-
cally this process takes 200-300 hours of developer time per 
hour of instruction time. The Cognitive Tutor Authoring Tools 
(CTAT) introduced example-tracing as an alternative method 
of ITS authoring, which does not require programming and 
reduces authoring time down to 50-100 hours per hour of 
instruction [2]. ITS authors who use example-tracing can 
program the behavior of an ITS by simply demonstrating all 
of the correct action(s) that can be taken at each step of a 
problem. For example, an instructional designer could make a 
single multi-column arithmetic problem with example-tracing 
by simply setting up and solving a problem every possible way 
in order to generate a behavior graph, a directed graph speci-
fying all possible solution paths. However, example-tracing is 
often not the best tool when it comes to problems with com-
plex behavior or highly variable solution spaces, such as in 
a complex algebra problem [16]. Additionally, with CTAT 
example-tracing scaling from a single problem to several prob-
lems (termed mass production) is still often a time consuming 
process which requires programming Excel spreadsheets [1]. 

CTAT exhibits a very simple form of programming-by-
demonstration (PBD), a broad class of machine learning tech-
niques which compose programs capable of replicating user 
demonstrations [6, 23]. Traditionally, PBD is used to help 
users automate repetitive tasks. The simplest PBD systems, 
like CTAT example-tracing, reapply the exact actions demon-
strated by users. More complex systems contain a learning 
agent capable of inducing generalized programs from user 
demonstrations. These induced programs can then be reap-
plied in new situations at the user’s command [10, 11]. Other 
PBD systems additionally learn the conditions under which 
each of several induced programs should be applied, allowing 
for the creation of complex interactive applications [19]. 

Some systems use a broader set of interactions beyond demon-
stration to learn from users [9, 14]. In this work, we refer to 
these approaches as machine teaching. In machine teaching 
systems the user may reinforce or correct an agent’s actions by 
providing clarifying demonstrations or correctness feedback 
[14]. For example, in the Gamut system users could build 
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whole games by demonstrating and correcting the movements 
of various objects [19]. Another system which operates by 
machine teaching is SimStudent, a computational model of 
human learning which learns to solve problems in an ITS [18]. 
For the purposes of ITS authoring SimStudent could be used 
to interactively author ITS behavior in conjunction with CTAT 
using an interaction design called Authoring by Tutoring [17]. 
One of the goals of Authoring by Tutoring was to further re-
duce ITS authoring times beyond the reduction achieved by 
CTAT example-tracing, while at the same time reintroducing 
some of the generality of model-tracing tutors. 

In general, AI agents which mimic the inductive learning pro-
cess undergone by students are known as Simulated Learners. 
Following the work of SimStudent, the Apprentice Learner 
(AL) Framework was created to build Simulated Learners 
similar to SimStudent, but modularized by their several inter-
working learning mechanisms [15]. Collectively these learning 
mechanisms generate skills in the form of production rules. 
Through user demonstrations and correctness feedback these 
learning mechanisms inductively refne the rules specifying 
the conditions that will cause a skill to fre and the way in 
which it will fre. Each learning mechanism in the AL frame-
work can be changed in and out to create unique agents primed 
to serve particular purposes. For example, the desired effcacy 
with which an agent learns might differ by use case. For the 
purposes of ITS authoring one would want an AL agent to 
learn as much as possible from each interaction to limit the 
tedium of the authoring process. By contrast for the purposes 
of student modeling agents would be taught without a human 
in the loop against an existing tutoring system, and the ideal 
agent would learn at the same, relatively slow, rate per oppor-
tunity evident in the logs of human students working in the 
same tutoring system. 

Simulated Learners like SimStudent and AL agents can be 
evaluated differently depending on their intended purposes [8]. 
For example, for the goal of producing accurate models of 
human learning one might assess whether a Simulated Learner 
is able to reach mastery from similar activities as human learn-
ers. SimStudent and AL agents have both been demonstrated 
to reach mastery performance at solving problems in ITSs 
[15]. However, for the purpose of acting as an ITS author-
ing tool, mastery performance is not a suffcient condition 
for success. An ITS must be able to check the correctness of 
any possible student input, not only produce a correct input. 
Instead, a Simulated Learner used to drive an ITS should ex-
hibit model-tracing completeness, defned as recognizing all 
intended correct actions as correct, and no incorrect action as 
correct for all possible states in a problem’s intended solution 
space. If a Simulated Learner achieves mastery performance 
in an ITS, then it can at least recognize a particular correct 
solution path through a problem. However, only a Simulated 
Learner exhibiting the stronger condition of model-tracing 
completeness can recognize all incorrect actions as incorrect, 
and support every solution path intended by the ITS author. 

To date, no Simulated Learner has been well suited to the 
task of achieving model-tracing completeness. As we will 
demonstrate in this work, this failure is not due to technical 

limitations of existing Simulated Learners, but to the interac-
tion techniques used to train them [14]. At the heart of the 
issue is the fact that current interaction techniques including 
SimStudent’s Authoring by Tutoring treat the ITS author like 
they are an ITS and treat the Simulated Learner like a real 
human student using that ITS. However, there is no inherent 
requirement that a Simulated Learner must learn like a human 
[26], and framing interactions this way limits the sort of feed-
back that users can give in training the system. For example, 
if the ITS author is required to act like an ITS to the Simulated 
Learner than when any correct action is proposed they can only 
mark that action as correct. Such an interactions design would 
not afford, for example, the opportunity to demonstrate alter-
nate solution paths, or query for and correct other actions the 
Simulated Learner believes can lead to a solution. Ultimately, 
this perspective prevents authors from demonstrating full so-
lution spaces for different types of problems and checking 
them for completeness. In order to address this issue we have 
created a novel authoring interface for AL agents designed to 
be more transparent and fexible than previous interfaces. 

In this study we test the new interaction design of our AL 
authoring interface with 10 instructional design students with 
varying backgrounds. The objective of our study is to assess 
the degree to which our interaction design supports more eff-
cient authoring of model-tracing complete ITSs compared to 
CTAT example-tracing. The contributions of this work are: 

1. A novel interaction design for authoring Intelligent Tutoring 
Systems using Simulated Learners that emphasizes model 
transparency, input fexibility, and problem solving control. 

2. A user study demonstrating the effcacy of this interac-
tion design toward training Simulated Learners that exhibit 
model-tracing completeness. 

3. Design recommendations for future Simulated Learner 
based ITSs authoring tools. 

THE APPRENTICE LEARNER FRAMEWORK 
Apprentice Learner agents are Simulated Learners comprised 
of sets of modular interconnected learning mechanisms [15]. 
Each learning mechanism serves a particular role in skill 
induction or refnement. A skill is a collection of learning 
mechanism instances and a production rule induced by those 
learning mechanism instances. A production rule consist of 
a left-hand side which specifes the conditions suffcient for 
it to fre, and a right-hand side which specifes what occurs 
when it fres [3]. The left-hand side of each skill is learned by 
the where-learning and when-learning mechanisms. Similarly, 
the right-hand side is induced and refned, by the how-learning 
mechanism. There is also a which-learning mechanism which 
is a confict resolution strategy for choosing which skill to fre 
should multiple skills have their where and when conditions 
satisfed at a particular step in problem solving. 

A single AL agent uses different machine learning algorithms 
for each of its various learning mechanisms. For example, the 
where-learning mechanisms learns the conditions for match-
ing interface elements pertaining to the application of a skill by 
inductive logic programming [21]. These conditions that the 



Figure 1: Screenshots of our AL authoring interface when skill applications are proposed (left) and after a user demon-
stration (right). 1a) The skill window with several proposed skill applications. 1b) The skill window with 6 and 4 buttons 
toggled. 2a) The selected skill and its formula. 2b) The selected/staged skill application. 3) The tutor interface with where 
match highlighted. 4a) The Yes and No button dialog. 4b) The Yes and No buttons are replaced with a Submit button 
which when clicked will send the 6 and 4 button feedback encoded in 1b. 5) Debug information describing the state of 
the selected skill’s learning mechanisms. Not intended for users. 6) The state of the tutoring system after a user has made 
a demonstration (blue 5) and selected foci-of-attention (purple glow). 7) Yes and No buttons replaced with Next button. 

where-learning mechanism learns match to both the interface 
element where a skill will be applied and the interface ele-
ments from which the value of that skill application is derived. 
In this study we use a variation of the version space algorithm 
for the where-learning mechanism [20]. The when-learning 
mechanism determines the conditions when a skill should be 
applied. When-learning mechanisms can be implemented us-
ing any form of binary-classifcation algorithm. For example, 
in this study we use the decision tree algorithm [4]. The how-
learning mechanism induces and refnes the behavior that is 
applied when a skill fres. The agents in this study use a search-
based planner to form one or more formulas that explain each 
user provided demonstration. This planner searches over a 
number of numerical functions such as addition and division 
by ten which the agent is provided as prior knowledge. 

An important feature of the AL agents used in this study is that 
their where-learning and when-learning mechanisms support 
skills that are not tied to particular interface elements. Skills 
can be applied between steps in an interface and even between 
interfaces. Skills are applied when a particular set of interface 
elements match learned where and when patterns. 

AL agents support two primary functions, request, which re-
turns a set of actions that an agent thinks it can take given a 
tutoring interface state, and train, which engages the agent’s 
learning mechanisms from a state-action pair and reward. In 
this study we also support a train_explicit function which uses 
a skill application instead of an action for ftting. A skill appli-

cation is associated with a particular instance of a skill fring 
while an action is not. For example, two skill applications 
from two different skills might apply the same action. Train 
differs from train_explicit in that train gives feedback to all 
skills that could have produced an action. Readers may fnd 
additional details in the following prior publications [15] [13]. 

Prior to this study AL agents learned interactively from the 
user via the same interaction design used in SimStudent’s Au-
thoring by Tutoring. In Authoring by Tutoring when an agent 
produces an action in the interface it requests for correctness 
feedback from the user, and if the agent cannot produce an 
action it asks for a demonstration of correct behavior. When 
users provide demonstrations they also specify the interface 
elements from which that action was computed to make skill 
induction less ambiguous. 

INTERACTION DESIGN 
Most PBD systems, including those that use the broader set 
of machine teaching interactions [14] like SimStudent, put 
the user in the perspective of teaching an agent as it takes 
steps along a path through a problem, to ensure that the agent 
produces correct actions. We refer to this perspective as the 
performance-model perspective, as its aim is to ensure that an 
agent performs correctly along some path to a goal. 

When specifying the behavior of an ITS one must defne be-
havior that can respond to the whole space of possible student 
solutions. Teaching an agent to understand this entire space is 
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a more complex machine teaching task than teaching an agent 
to perform correctly through just a single solution path per 
problem. When using Simulated Learners for ITS authoring 
we would prefer for them to achieve model-tracing complete-
ness, defned as the ability to identify all intended correct next 
actions as correct, and all other actions as incorrect for all 
possible problem states. Importantly, the condition of model-
tracing completeness can be applied to any tutoring system 
given an intended set of behaviors regardless of the underlying 
implementation of the tutoring system (example-tracing or 
model tracing). Model-tracing completeness is an evaluation 
of the behavior of the tutoring system thus all systems which 
operate as intended are equally model-tracing complete. An 
ITS author can evaluate the local model-tracing completeness 
of each step of a problem, by simply considering whether or 
not the set of actions currently allowed by the tutoring system 
at that step agree with their understanding of how the tutoring 
system should work. 

Our novel interaction design seeks to support users in taking a 
model-tracing completeness perspective where users evaluate 
agents on the set of all skill applications an agent produces 
at each step instead of on a single suffcient action that the 
agent chooses at each step. To support this perspective our 
new interaction design makes skill applications transparent to 
the user, is fexible to a wide range of user interactions, and 
gives the user more control over the problem solving process. 

Model Transparency 
From the performance-model perspective a user only needs to 
ensure that an agent produces a correct action at each step in a 
problem. However, for a user to confdently train a Simulated 
Learner to manifest model-tracing completeness they must be 
able to see whether or not the agent can produce all intended 
correct actions at each step. In order to give the user access 
to this information we created a skill window (Figure 1.1a), 
which lists all of the skills that an agent believes can be applied 
on the current step. 

This skill window provides users with considerably more in-
formation than they would see in a typical performance-model 
perspective interaction design. Instead of a single action the 
user sees all skill applications that the agent considers correct 
for a given step (Figure 1.1a). This allows them to assess not 
just whether the agent would have taken a correct action at that 
step, but whether the agent exhibits complete model-tracing 
behavior for that step. In seeing skill applications, the user is 
made aware of information concerning how the agent’s associ-
ated actions came about. This includes the formula induced by 
the agent on the frst application of each skill (Figure 1.2a) and 
the particular interface elements matched by the conditions 
learned by the where-learning mechanism for each proposed 
application of the skill (Figure 1.2b). The where match in-
cludes the interface element that the action would be taken 
on and the elements used as arguments for the formula from 
which the value of that action was derived. For example, in 
Figure 1.1a, a skill application is selected with formula: "(E0 
+ E1 + E2) % 10" (i.e., take the modulus 10 of the sum of ele-
ments E0-E2) and a where match consisting of the arguments 
inpA2, inpB2, carry1 and the selection element out2. The 

user can also see that the formula evaluated on these interface 
elements yields 5. 

It is important to note that the skill applications displayed 
in the skill window are not representations of the underlying 
AL agent’s AI or its derived production rules. The displayed 
skill applications are simply the fring of the AL agent’s de-
rived skills and are comprised only of an action, highlights 
indicating the values from which that action was computed 
and a mathematical formula. Thus, the information presented 
to the user requires no additional expertise to understand be-
yond knowledge of the particular domain being covered by 
the tutoring system. No checking of the underlying program 
or knowledge of AI is required by the user. The skill window 
adds transparency beyond extant interaction designs for Sim-
ulated Learners in that it provides an interactive display of 
all possible next actions that a Simulated Learner currently 
believes are correct. 

By clicking each proposed skill in the skill window users can 
select each skill application as the staged skill application. 
When a skill application is staged (Figure 1.2b) its where 
match elements are highlighted in various colors (Figure 1.3). 
The state change caused by the action is prominently high-
lighted in purple, and the argument elements are highlighted 
less prominently in several other unique colors. 

Input Flexibility 
When a proposed skill application is staged the user can give 
it positive or negative feedback by pressing the Yes or No 
buttons respectively (Figure 1.4a). When Yes is pressed the 
action is applied putting the tutoring system in a new state, 
then a new set of skill applications are proposed by the agent 
and displayed in the skill window. Authoring by Tutoring had 
equivalent positive and negative feedback buttons, however our 
interaction design lets users give feedback to any of the skill 
applications proposed by the agent by staging them from the 
skill window. Additionally, our interaction design allows users 
to directly give feedback to all proposed skill applications at 
once by toggling the 6 and 4 buttons associated with each 
item in the skill window (Figure 1.1b). When any of these 
toggle buttons are selected the Yes and No buttons are replaced 
with a Submit button which, when pressed, sends all of the 
positive and negative feedback encoded in these toggle buttons 
to the agent (Figure 1.4b). Since the next state that the user 
wants to enter into may be ambiguous (e.g., there are multiple 
skill applications that have been marked as correct), pressing 
the submit button does not apply any of the associated actions 
to change the state of the tutoring system. 

These new interactions give users the ability to provide a 
Simulated Learner with the feedback necessary to construct 
a complete model-tracing model. At each step the user can 
give feedback on all proposed skill applications instead of on 
only the skill application which the agent would choose to 
execute. By seeing and responding to all proposed actions 
the user can be more confdent that a particular step exhibits 
complete model-tracing behavior. 



Problem Solving Control 
By choosing which skill applications to give feedback on, the 
user can also choose what states the tutoring system enters 
into. If Simulated Learners were to always choose a single 
skill application for a user to give feedback on then it would 
also be choosing the state the tutoring system would go into 
for the next round of feedback. When this is the case, the paths 
through problems that the user can test and give feedback on 
are heavily dependant on the Simulated Learner’s confict res-
olution strategy (i.e. which-learning mechanism). By default 
AL agents prioritize skills which have received the greatest 
proportion of positive feedback, meaning the frst applicable 
skill is often the same for similar states. SimStudent’s default 
behavior by contrast was to choose a single skill randomly 
among applicable skills [18]. Our interaction design reduces 
the role that an agent’s confict resolution plays in training. 
A user is allowed to override a Simulated Learner’s default 
action by staging any skill application they choose. Conse-
quently, users can make informed decisions about where to 
give the Simulated Learner feedback. 

In addition to being able to give correctness feedback to the 
skill applications proposed by a Simulated Learner, our system 
allows users to demonstrate actions at any point in authoring 
regardless of whether or not the Simulated Learner has sug-
gested an action (Figure 1.6). When demonstrating, users 
directly take actions in the interface. Giving the user this 
freedom means that they can set about building a complete so-
lution space for a problem domain without being constrained 
to choosing among the Simulated Learner’s induced skills at 
each step. Combined with the transparency to see all appli-
cable skills at each step this fexibility orients the interaction 
design toward supporting a model-tracing completeness per-
spective as opposed to a performance-model perspective. 

METHODS 
In order to test whether our interaction design supports users in 
making model-tracing complete ITSs we had 10 participants 
author three-digit multi-column addition problems using our 
new AL authoring interface, and CTAT example-tracing inter-
face. All participants were masters or PhD students studying 
educational technology. Users were paid $30 per hour for a 
total of an hour and a half to two hours. 8 participants were 
familiar with the CTAT authoring tools and 2 were not. 4 
participants did CTAT frst, and the rest used the AL interface 
frst. 

Participants were given the same ready made HTML interface 
(Figure 2) to use with both authoring modes. Each participant 
was asked to author each problem in a set of 11 specially 
selected multi-column addition problems (e.g., 543 + 678 = 
1221). At each step in a multi-column addition problem, all 
of the numbers in a column may or may not add to more than 
10, requiring the ten’s digit to be carried to the next column. 
Our 11 problems were selected such that the solutions for the 
frst 8 problems exhibited each of the 8 carry patterns possible 
in three-digit addition problems. The last three problems 
captured situations where the carry pattern would be incorrect 
if a student had forgotten to add the carry from the previous 
column (Figure 2b). We used our frst two participants to 

Figure 2: The multi-column addition tutor interface com-
pleted on two problems with different carry patterns. a) 
The middle carry is not present. b) All carries are present. 
Two columns exhibit a special case where they add to 
10 only if the carry derived from the previous column is 
added. 

estimate the appropriate amount of time to give each user. 
These two participants primarily used one authoring type, and 
spent little or no time with the other type. The remaining eight 
users spent at most 45 minutes authoring with each of the two 
tools. For all participants, one of the authors was available 
to provide guidance and answer questions on both authoring 
interfaces. 

When using CTAT example-tracing, participants were asked 
to frst make a behavior graph (Figure 3) to handle each of 
the eight carry patterns, and then for each one proceed as if 
they were going to use CTAT’s mass production feature to 
make dozens of practice problems of each type. For novice 
users, we explained each of the steps involved, and demon-
strated steps where necessary. The steps for mass producing a 
CTAT example-tracing tutor include demonstrating multiple 
solution paths to create a behavior graph, replacing the val-
ues for each edge in the demonstrated behavior graph with 
variables, and creating a problem table complete with Excel 
spreadsheet equations. In practice, a user might then use this 
spreadsheet to mass produce a large number of problems of 
a particular form. We only asked users to replicate the given 
problem and another of their own creation manifesting the 
same carry pattern. Participants were encouraged to test their 
mass produced problems to make sure that their formulas and 
choice of problems were correct and consistent with the carry 
pattern for the provided problem. 

When using the AL authoring interface users were frst given 
a brief demo of the interface. Then the agent was reset and the 
participants started again from scratch. Participants entered 
each of the provided problems into the interface one at a time, 
and then demonstrated steps and provided correctness feed-
back to train an AL agent. After going once through the pro-
vided problems participants continued redoing problems from 
those provided or of their own choosing until they felt that the 
agent had achieved full model-tracing completeness. At the 
point when the participants decided that they were fnished or 
at the 45 minute mark we used a grading script to assess the 



Figure 3: CTAT example-tracing. An intermediate solu-
tion state (left), and part of a behavior graph (right) spec-
ifying legal actions at each step. The graph branches so 
that adding and placing carries can be done in either or-
der. 

model-tracing completeness of the user’s trained Simulated 
Learner. The grading script measured the proportion of model-
tracing complete steps in the 11 given problems, in addition 
to 12 problems from a holdout set with a diversity of carry 
patterns. As participants worked, a researcher occasionally 
intervened to remind them of the criteria for reaching 100% 
completeness. There was no formal condition for intervening; 
however, we typically intervened whenever the participant had 
questions, fnished going through all the problems for the frst 
time, and at any point where they seemed uncertain about the 
behavior the ITS was intended to exhibit. For example, we 
often reminded participants that if a carry was absent then the 
box should be left blank (instead of for example inserting a 
zero). Our intention in choosing to intervene was to be able 
to get a qualitative sense of how having varying degrees of 
mastery with the interface might change a user’s interaction 
with the software. By partially scaffolding the participants’ ex-
perience in this way we could see them progress from novice 
to expert users. 

RESULTS 
Our goal was to test whether our novel interaction design 
would enable users to train a Simulated Learner exhibiting 
full model-tracing completeness with three-digit multi-column 
arithmetic problems in much less time than it would take them 
to directly author the eight mass produced behavior graphs 
necessary to completely build problems in this domain with 
CTAT example-tracing. 

Quantitative 
The results of our user study are summarized in Table 1. For 
the AL authoring interface, our grading script measured com-
pleteness as the proportion of legally enterable states in which 
a tutor’s behavior is model-tracing complete (i.e. only marks 

User First AL 
Complete 

AL 
Time 

CTAT 
Complete 

CTAT 
Time 

1 CTAT 30% 15min 11% 45min 
2 AL 85% 55min N/A* N/A* 
3 AL 98% 45min 13% 45min 
4 CTAT 83% 30min 7% 45min 
5 CTAT 92% 42min 50% 45min 
6 AL 91% 25min 27% 45min 
7 CTAT 92% 35min 11% 45min 
8 AL 98% 41min 23% 45min 
9 AL 85% 41min 13% 30min** 
10 AL 99% 45min 23% 45min 

Average 85% 37min 20% 43min 
Median 92% 41min 13% 45min 

Table 1: Performance of AL agents for each user by pro-
portion of grader problems where the agent’s skill applica-
tions were model-tracing complete (AL Complete). In ad-
dition, completeness progress in CTAT (CTAT Complete) 
and total times for both authoring types. *User 2 had to 
leave before they had the opportunity to start with CTAT. 
**User 9 did not enjoy using CTAT and elected to leave 
early. 

the intended correct next actions as correct). The states graded 
by our script included all of the unique steps along each of 
the legal solution paths in the 11 given problems and in the 12 
problems in the holdout set. Completeness for the CTAT au-
thoring mode is measured, more leniently, as the total progress 
the user made in producing the eight mass production ready 
behavior graphs. Each complete behavior graph and set of 
mass production formulas counted toward 1/16th of total com-
pleteness, and partially completed graphs, and Excel formulas 
received partial credit. For example, in the course of 45 min-
utes, users 1 and 7 completed an example tracing graph for 
one of the carry patterns and made it half way through writing 
mass production formulas for it in Excel, yielding a total of 
11%, just short of the 13% (rounding up from 12.5%) which 
they would have earned had they fully completed one of the 
eight carry patterns. Although model-tracing completeness is 
measured differently between conditions, 100% model-tracing 
completeness means the same thing for both model-tracing and 
example-tracing tutors—that the tutor exhibits the intended 
correct behavior along all solution paths for all problem types. 

The average model-tracing completeness achieved by users 
with AL across conditions was 85%. Excluding user 1, who 
had to leave after working for just 15 minutes, the average 
completeness was 91%. By contrast users achieved an aver-
age of 20% completeness with CTAT which corresponds to 
demonstrating, variablizing, and mass producing one behavior 
graph, then demonstrating and variablizing a second graph 
but not beginning the Excel spreadsheet to mass produce it. 
There was no appreciable difference in performance on our 
interface between users who were and were not familiar with 
CTAT. Additionally, there was no appreciable difference be-
tween users who used CTAT frst or the AL interface frst. 
Estimating completeness progress to be linear with respect to 
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time, participants achieved an average of 2.2% completeness 
per minute with AL and .5% completeness per minute with 
CTAT example-tracing. This constitutes slightly more than 
a 4-fold speedup in authoring time for equivalent levels of 
completeness. No participants reached 100% model-tracing 
completeness in either interface; however, three participants 
achieved completeness scores within 2% of full completion. 

These results show us that although users can achieve greater 
levels of completeness using AL agents with our interaction 
design than with CTAT example-tracing, they fall short of 
building fully complete model-tracing behavior. The major-
ity of users believed that they had reached full model-tracing 
completeness before their 45 minutes were up. Our own in-
ternal tests among ourselves show it is possible to achieve 
100% model-tracing completeness in the course of about 20 
minutes. Even though our users did not reach 100%, we found 
that they were supported in approaching full model-tracing 
completeness. Had users been constrained to authoring from 
a performance-model perspective, like in SimStudent’s Au-
thoring by Tutoring, they could have achieved at most 55% 
model-tracing completeness since 45% of the states in the 
holdout set can only be reached by supporting alternate paths. 
However, all users that authored for 45 minutes or up to the 
point that they believed they had achieved model-tracing com-
pleteness reached at least 83% model-tracing completeness. 

Qualitative 
In addition to the quantitative measures we also informally 
observed some trends among participants. When using CTAT, 
several users encountered a few common interaction diffcul-
ties. Many users had a hard time telling the difference between 
edges (denoting actions) and nodes (denoting problem states) 
in behavior graphs (In Figure 3 edges are shown in green text 
while nodes are in black). They would click an edge hoping to 
navigate to a state, but nothing would happen. A few partici-
pants who were more familiar with CTAT became sidetracked 
by trying to use features which they had once used successfully 
but no longer remembered how to use. These features included 
CTAT’s formula function language (an alternative approach 
to using Excel equations), and creating unordered groups of 
steps. One user reported that it was diffcult to fx errors with 
CTAT because the process of mass production required using 
two different applications (Excel and CTAT). Although the 
majority of our users were familiar with how to use CTAT, we 
often had to intervene to remind them of how to do certain 
steps. 

Likewise, when working with the AL authoring interface users 
generally needed guidance in order to help them recognize 
model-tracing completeness at each step, and provide feed-
back and demonstrations when it had not been achieved. Al-
though our initial demo covered these points, participants’ 
initial behavior often indicated that they did not fully grasp 
the completeness objective. For example, some participants 
fell into a pattern of only giving feedback on the frst skill 
application proposed by the AL agent. Other participants 
forgot to demonstrate steps if not all of the intended correct 
actions were proposed. These behaviors are indicative of 
the performance-model perspective. When participants con-

sistently showed one of these behaviors, we helped them to 
understand how to use the interface to reach completeness 
through the model-tracing-completeness perspective. The fact 
that we consistently needed to intervene means that our inter-
action design could use some improvements to better induce 
this perspective in frst time users. We discuss this further in 
the future work section. 

There were a few patterns that we observed among partici-
pants. Most participants began interacting with the interface 
by only responding Yes or No to the frst proposed skill ap-
plication. However, after we reminded participants that they 
needed to give negative feedback to erroneous proposed skill 
applications, they tended to interact in one of two ways. Either 
participants would stage skills and press Yes or No, or they 
would primarily use the 6 and 4 buttons. When primarily 
using the Yes and No buttons users would sometimes give 
positive feedback before responding with negative feedback 
causing them to change the problem state without achieving 
model-tracing completeness on the step they were in. When 
participants predominantly used the 6 and 4 buttons they 
tended to give feedback to all of the proposed skill applica-
tions even if they were both correct. However, since only 
the Yes button could be used to navigate forward through a 
problem this meant they usually gave redundant feedback. In 
both these cases the fact that the Yes button was used for both 
navigation and feedback was associated with user errors or 
ineffciencies. 

Generally, participants reported that they enjoyed working 
with the AL agent more than CTAT example-tracing. Some 
participants even thought training the AL agent was fun. A few 
participants reported that although the initial authoring steps 
were diffcult it was rewarding to see the AL agent learning 
from their feedback to the point that they usually just had to 
click Yes at each step. Participants felt more confdent that 
the progress that they had made with CTAT was complete 
and found that although it was relatively quick to train an AL 
agent it was hard to be certain of when the agent had reached 
completeness. 

DISCUSSION 
The fact that our interaction design supported users in reaching 
model-tracing completeness is a promising result. Although 
there were some limitations to our study, we believe these re-
sults have important implications for PBD and ITS authoring. 

Limitations 
In this study we only tested our interaction design on a sin-
gle type of arithmetic problem. Multi-column addition was 
chosen because it is a type of problem with multiple solution 
paths which can be authored with both CTAT example-tracing 
and a Simulated Learner. We would, however, would like 
to see if these results extend to other types of problems. In 
practice Simulated Learners can induce a wider range of be-
haviors than are easily achievable with example-tracing [13]. 
We did not fex this functionality. Additionally we did not test 
our AL agents’ abilities to generalize to problems of differ-
ent sizes. For example, if an agent achieves model-tracing 
completeness on three-digit problems it should in principle 
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be model-tracing complete on two-digit, four-digit, and larger 
addition problems. 

Our users were restricted to current educational technology 
students whereas in future work we would like to work with a 
greater diversity of users, including teachers and professional 
instructional designers. We would have also liked to test our 
users’ progress toward model-tracing completeness at every 
step rather than only at the end. This would have helped us 
measure places where their progress slowed. Additionally, it 
would be interesting to see how users fare with our interac-
tion design with considerably less scaffolding—no predefned 
problem sequence, and no interventions. 

Implications For ITS Authoring 
Effcient, easy-to-use ITS authoring tools backed by Simu-
lated Learners have the potential to have a large impact on 
making ITSs widely available inside and out of the classroom. 
Although our participants were relatively skilled with the tech-
nologies involved, we believe that the signifcant speedup we 
observed in authoring times relative to CTAT example-tracing 
bodes well for future studies of both teachers and instructional 
designers. Unlike CTAT which requires some light program-
ming in Excel for its mass production step, our interaction 
design requires neither prior programming knowledge nor an 
understanding of our tool’s underlying AI. Ultimately, we see 
this study as a step toward using Simulated Learners to make 
ITS authoring easy enough that teachers could author tutoring 
systems without any special training, and fast enough that 
instructional designers could build the core functionality of 
tutoring systems in as little time as it takes to write a worksheet 
and grade a few students’ work. 

Implications For Programming-by-Demonstration (PBD) 
Generally, PBD systems support a performance-model per-
spective, where the goal is to train an agent to correctly per-
form tasks. The feld of PBD may beneft from adopting inter-
action designs which support the model-tracing-completeness 
perspective as well. Consider a case where an agent taught 
via PBD must choose among several possible actions. For 
example, one might train an agent to treat possible instances 
of cancer. The agent could be responsible for diagnosing and 
prescribing treatment via the same iterative process that an 
oncologist might go through—ordering several rounds of di-
agnostic tests, checking the progress of treatments, and chang-
ing strategies when appropriate. A well trained agent would 
choose an action at each interaction in alignment with the 
positive feedback of its human teacher. Usually, this teaching 
would result in the agent learning a single course of action or 
single strategy. However, it may be the case that unforeseen 
circumstances make this strategy impossible or undesirable. 
For example, the appropriate course of action may be to pre-
scribe a particular drug, but the drug has run out. In this case, 
the agent will need a plan-B. If the agent has only been trained 
from a performance-model perspective then its second choice 
of action may be erroneous or even catastrophic to the user. 
For example, the agent may instead prescribe a dangerous and 
unnecessary surgery. However, if the agent was trained using 
an interface which encouraged a model-tracing-completeness 

perspective then the oncologist training the agent could demon-
strate alternate solution strategies for various situations and 
cull out any misconceptions the agent may temporarily acquire 
about those strategies. In this way, the agent would accurately 
learn alternative diagnosis and treatment strategies to more 
fexibly deal with unforeseen circumstances. 

FUTURE WORK 

Visual Features 
The results of our user study revealed several considerations 
for future revisions to our current design. One unanticipated 
issue was that some users reported having trouble switching 
focus between the skill window and the tutoring interface. 
Although these participants understood that their objective 
was to ensure model-tracing completeness at each step, their 
focus was often directed only on the current staged skill. In 
cases when the staged skill was correct, participants often 
simply pressed the Yes button to navigate to the next step 
without considering any other proposed skill applications. One 
solution to this issue would be to have the authoring tools 
show all of the applicable skills directly on the tutoring system 
interface. For example, the staged skill could be highlighted in 
color, and the others in gray. This would allow users to quickly 
assess the model-tracing completeness of a particular step 
without requiring them to switch their focus to the skill window 
and manually toggle between the proposed skill applications. 
An alternate solution would be to remove the Yes and No 
buttons entirely to slow the user down and force them to use 
the skill window to consider all proposed skill applications. 

A related aspect of the AL authoring interface that users re-
ported having diffculty with was understanding the descrip-
tion of skills in the skill window. The content of the skill 
window is organized into a nested list with skills as major 
items and applications of those skills as minor item. Skills are 
written out as mathematical formulas with variables. Skill ap-
plications contain both the identifers for the interface elements 
which bind to those variables (the where parts), in addition to 
the input value derived from evaluating the skill formula on 
those interface elements. Since interface element identifers 
are sometimes named arbitrarily, for example ’div64’, users 
did not fnd this format particularly useful for identifying skills. 
Users often opted to click through the skill window manually, 
staging items, to see the action of each skill application vi-
sually on the tutoring interface. To improve the readability 
of the skill window it may be helpful to make use of letter 
or symbol identifers in the description of skill applications. 
These identifers could have counterparts displayed on the tu-
toring interface to help users associate the content of the skill 
window with the content of the tutoring interface. 

Recovering From Mistakes 
A core usability issue which we anticipated among our users 
was the lack of means to recover from mistakes. In our current 
design, mistakes of providing erroneous positive or negative 
feedback can be remedied by outweighing these errors with 
several instances of correct feedback. However, some errors 
cannot be easily recovered from. For example, some forms of 
erroneous demonstration can cause the where-learning mecha-
nism to considerably overgeneralize and propose a very large 



number of mostly incorrect skill applications. In our current 
system, recovering from this sort of mistake would require 
tediously giving negative feedback to all of these skill applica-
tions across the whole problem space. 

We have identifed a few design strategies that might help users 
recover from errors. A simple undo button is a common means 
for recovering from mistakes, and we hope to include this in 
future work. However, we found that our users were usually 
unaware of their mistakes, so an undo button would only have 
solved a small part of the problem. We found that a few issues 
with our where-learning and when-learning mechanisms made 
it hard for users to recover from mistakes easily and made our 
system vulnerable to unrecoverable failure. 

For example if a user incorrectly gave positive feedback to an 
incorrect action and then tried to correct this error later, our 
current when-learning mechanism would weight the correction 
equally to the erroneous feedback, meaning users would need 
to repeatedly reinforce the good behavior to overcome the 
error. As a general design recommendation we suggest that 
new user demonstrations should override old ones should a 
confict arise. This way feedback mistakes, including ones 
that users have repeatedly reinforced can be remedied without 
having to repeatedly specify correct behavior. 

Additionally, we found that the current where-learning mecha-
nism in our AL agents would sometimes cause catastrophic 
overgeneralization errors, where an erroneous demonstration 
would lead to the when conditions binding to many more sets 
of interface elements than the user intended. As a general 
design recommendation, we think user demonstrations should 
cause conservative changes in case they need to be undone. 
An improved version of our where-learning mechanism would 
be cognizant of the number of new sets of interface elements 
it would bind to by generalizing its matching rules. This alter-
nate mechanism might hold off on performing generalizations 
that result in large changes to the matching behavior until the 
generalization can be substantiated by subsequent examples. 
A when-learning mechanism like this could give the user the 
opportunity to correct erroneous demonstrations well after 
they were produced. 

Prior Knowledge and Skill Induction 
One aspect of authoring which we have overlooked for the 
purposes of this study is prior knowledge specifcation. The 
search-based planner that induces skill formulas requires a set 
of functions that it can chain together to explain demonstra-
tions. In our study, we preloaded a few functions suffcient 
for multi-column addition. In a full authoring suite however, a 
very large number of functions could be available. Savvy users 
may even be inclined to author their own functions. Thus, we 
still must determine how users might select a subset of these 
functions for the purposes of authoring in a particular domain. 
This could be done with a simple menu with toggle buttons 
displayed at the beginning of authoring. However, it may be 
possible to skip this step altogether by having a Simulated 
Learner induce skills from all (or at least a large subset) of the 
available functions, and then have the user narrow down the 
set of explanations for a demonstration by searching for their 
intended formula. This process could be assisted by including 

a search bar where users could type keywords associated with 
their intended formula, or input these keywords multi-modally 
with speech-to-text. 

Another approach would be to allow skill formulas to be re-
fned through the training process instead of forcing users to 
zero in on a skill’s formula at its frst demonstration. Currently, 
when multiple explanations are available for a demonstration 
an AL agent will instantiate a skill with a formula taken from 
the most parsimonious of the conficting explanations. If this 
formula proves to be incorrect in a later situation a new one 
may be induced. SimStudent has demonstrated a potential 
solution to this problem in its ability to revise skill formulas. 
For example, a demonstration of 2 and 2 makes 4 might in-
duce a skill with formula Add(x,y); however, if later there 
is a demonstration in a similar situation of 3 and 3 makes 9, 
then the formula may be revised to Multiply(x,y) since this 
generalizes to both 3*3=9 and 2*2=4. An advantage of this 
approach is that the user never actually needs to inspect the 
formulas induced from demonstrations. A challenge to this 
approach is that determining when a skill formula should be 
changed and when a new skill should be induced is not always 
clear. In SimStudent users explicitly express the connection 
between each demonstration and the skill it should refne or 
induce. While this helps to address generalization problems, 
it would introduce an additional step to the authoring process. 

Supporting Model-tracing Completeness 
It was not always easy for our users to identify whether or not 
they had trained an AL agent to the point of model-tracing 
completeness. In CTAT, users can visually see the demon-
strated structure of a problem’s solution space through its 
behavior graph. By contrast, it is not always clear where a 
Simulated Learner needs additional demonstrations or cor-
rectness feedback without explicitly going through problems, 
perhaps several times. 

One way of making a user’s progress toward model-tracing 
completeness more transparent would be to display an induced 
behavior graph for each problem. This behavior graph could 
be constructed by proceeding from the start state to the done 
state in a breadth frst fashion by adding edges for each action 
suggested by a Simulated Learner at each state. Immediate 
candidates for user feedback would be actions which result 
in states with no path to the done state. However, after these 
cases have been eliminated there will be extraneous paths 
which lead to the done state but are incorrect. However, the 
interface could support the user in identifying these paths. 

In our study, users had diffculty keeping track of all the sit-
uations where they had provided feedback or not. For prob-
lems with exponentially larger solution spaces reaching model-
tracing completeness with our current interaction design may 
prove elusive. However, we believe it would be possible to 
support users in these sorts of cases. For example, to aide users 
in fnding paths which could use explicit feedback, a Simu-
lated Learner could keep track of which paths it had implicitly 
constructed and which were specifed explicitly by a user. In 
principle, an AL agent could even construct a continuous sense 
of its confdence in a particular skill application by gauging 
how similar the situation is to states and skill applications 
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which have been provided explicit feedback. This information 
could be visualized on the problem level by annotating each 
edge in an induced behavior graph with these confdences. 
Similarly, at the step level this information could be used to 
create a skill application confict resolution strategy which 
places low confdence skill applications higher in the skill 
window, with the least confdent, and thus most likely to be 
incorrect, skill application staged by default. Employing this 
strategy would make likely incorrect skill applications more 
salient to the user. A secondary confdence heuristic could 
even be aware of low skill application confdences downstream 
from the current state, leading the user to give feedback along 
paths which they have not already traversed. In principle, users 
do not need to give explicit feedback in every conceivable sit-
uation since AL agents generalize across situations. Thus a 
well crafted confdence heuristic could signifcantly cut down 
on the number of situations that a user needs to check to reach 
model-tracing completeness. 

Making Smarter Agents 
One of our users referred to the agent as ’dumb’ because after 
many demonstrations it was still making mistakes. There are 
a few ways that an agent could more quickly converge to the 
behavior a user intended for it to learn. SimStudent included 
a feature in its when-learning mechanism that made positive 
feedback to one skill count as implicit negative feedback to 
all other skills. Implicit negatives were overridden by explicit 
positive feedback to avoid interference between skills. This 
implicit negative feedback caused skills to be applied much 
more conservatively. For the purposes of achieving model-
tracing completeness, implementing implicit negatives in AL 
agents could reduce the amount of time users spend searching 
for erroneous skill applications. A drawback of this approach 
is that it would require the users to make a larger number of ex-
plicit demonstrations, which are slightly more time consuming 
and prone to error than providing correctness feedback. 

Another concern with when-learning mechanisms in extant 
machine teaching systems is that they tend to commit to a 
single set of conditions that separate negative examples from 
positive ones. In reality, there is often a large space of condi-
tion sets which could separate all of the positive and negative 
examples produced so far by the user. Consequently, some-
times the set of conditions that a when-learning mechanism 
picks in this large space results in false negatives where the 
agent does not produce an intended skill application, or a false 
positives where the agent produces an incorrect skill applica-
tion. The Gamut system’s strategy for reducing the size of 
this space was to prompt the user to select interface elements 
on which the actions produced by the system depended [19]. 
Similarly, AL uses foci-of-attention to make skill induction 
easier, but a similar interaction could be implemented to aide 
the when-learning mechanism specifcally. Alternatively, an 
AL agent’s when-learning mechanism could use spatial and 
temporal heuristics to pick conditions sets which are more 
likely to be consistent with future demonstrations. These 
heuristics would encode the fact that steps in procedural tasks 
tend to be done roughly in some order and roughly spatially 
close together (e.g., problems may generally be solved from 
left-to-right and down). 

CONCLUSION 
In this paper, we presented a novel interaction design for creat-
ing intelligent tutoring systems by training Simulated Learners. 
We demonstrated that our novel interaction design supported 
users in creating nearly model-tracing complete ITSs in less 
than a quarter of the time it would take to author the same 
ITSs with CTAT example-tracing. Finally, we provided several 
design recommendations for future work in Simulated Learner 
based authoring tools. 
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