l‘)

Check for
updates

Toward Stable Asymptotic Learning
with Simulated Learners

Daniel Weitekamp® | Erik Harpstead, and Kenneth Koedinger

Carnegie Mellon University, Pittsburgh, PA 15213, USA
weitekamp@cmu.edu

Abstract. Simulations of human learning have shown potential for sup-
porting ITS authoring and testing, in addition to other use cases. To
date, simulated learner technologies have often failed to robustly achieve
perfect performance with considerable training. In this work we identify
an impediment to producing perfect asymptotic learning performance
in simulated learners and introduce one significant improvement to the
Apprentice Learner Framework to this end.

Keywords: Simulated learners - Cognitive modeling - Authoring tools

1 Introduction

Simulated learners are simulations of human learning that learn to perform tasks
through an interactive process of demonstrations and feedback provided either
by a human tutor or an Intelligent Tutoring System (ITS). Simulated learners
have the potential to revolutionize learning technologies on a number of fronts,
Matsuda demonstrated that students can learn by teaching a simulated learner
called SimStudent [11], and Li showed the potential of SimStudent for cognitive
model discovery [5]. Additionally, Matsuda, Maclellan, and Weitekamp 7,10,
13] have demonstrated the use of simulated learners as a potential means of
authoring ITSs [12], such as cognitive tutors [4], more efficiently than comparable
methods [2] that do not employ simulated learners.

For the purposes of using simulated learners as authoring tools it is desirable
that the performance of the simulated learner asymptotically tends toward zero
error. This capability ensures that the ultimate tutoring system behavior learned
by the agent does not mark correct student responses as incorrect or incorrect
responses as correct. We explore the asymptotic performance of simulated learn-
ers using the Apprentice Learner (AL), a modular software library for creating
simulated learners instantiating different mechanistic theories of learning [6]. In
this work, we identify a new source of learning failure that prevent AL agents
from achieving zero training error and demonstrate an adjustment to the AL
framework that allows it to recover from this failure mode. More broadly this
work identifies and remedies an issue unexplored by prior inductive task learning
literature, how an agent can recover from an incorrect induction made early in
training to asymptotically acquire a knowledge state functionally equivalent to
a set of ground-truth procedural knowledge.

© Springer Nature Switzerland AG 2021
I. Roll et al. (Eds.): AIED 2021, LNAI 12749, pp. 390-394, 2021.
https://doi.org/10.1007/978-3-030-78270-2_69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78270-2_69&domain=pdf
https://doi.org/10.1007/978-3-030-78270-2_69

Toward Stable Asymptotic Learning with Simulated Learners 391

2 Training Test Domain: Multi-column Addition ITS

To demonstrate issues in aysmptotic training behavior, we use mutli-column
addition as a simple prototypical example. We train our agents on an I'TS imple-
mented with CTAT’s [1] nools [9] model tracer [3] that supports practice on what
is often called the “standard” or “traditional” algorithm for adding large num-
bers, whereby the digits of the numbers to be summed are aligned in columns,
summed column by column, with an extra “carry” row that is used for carrying
the tens’ digit from one column to the next.

I
5
+ 4 211

[e |6 1o

3 A Brief Overview of the Apprentice Learner Framework

Apprentice Learner agents learn a set of skills sufficient to apply target tasks by
learning in an interactive process with an ITS or human author. Each skills that
an AL agent learns has at least four parts how, where, when, and which, that are
each learned by different learning mechanisms. How-learning learns the how-part
a composition of domain general functions that produces an action. For example,
after trying a number of operations in different combinations how-learning might
learn the how-part Mod10(Add(?.v, ?.v)) which takes two interface elements (the
7s) as arguments, sums their values (the .v’s) and takes their one’s digit (i.e. the
modulus of 10).

A found RHS can work for a particular example but fail to work in general, for
example another explanation an AL agent may come up with from the previous
example is Copy(7.v) or just copy the value of the second value in a column into
the carry slot. For 5394421 this would work for the first carry step, but would
fail in general. In the AL agents used in this study a skill is identified by its
RHS, so if the RHS happens to be wrong a new one must be induced, and the
old one must be overridden or discarded.

Where-learning learns the where-part—a set of rules that pick out a set
of arguments for a RHS, for example all of the numbers above the line in a
column, and a “selection”, the field into which the evaluation of the RHS will
be placed. When-learning learns the when-part conditions, over the whole state,
under which a skill should fire given a proposed where-part binding. Finally
which-learning learns a policy for picking which potential application of a skill
should be applied if multiple pass the where- and when-part rules. Given space
constraints the reader should refer to prior work for further details about these
learning mechanisms [6,14].

392 D. Weitekamp et al.

4 Addressing Lingering Weak and Overgeneral Skills

AL agents may need to observe several examples of taking particular problem
steps to induce the correct how-part for the true skill associated with that kind
of step. In the meantime a weak (i.e. not correct in all situations) how-part can
be induced. Skills with weak how-parts will tend to be buried by building up
a low which-part utility through repeated negative feedback, whereas correct
skills may accumulate some negative feedback as their when-part conditions are
refined and fewer later on. Consequently correct skills tend to override weak
skills by accumulating a higher which utility. Prior work with simulated learners
has shown that overriding via which utility works well in many domains [§],
but we have identified some circumstances that necessitate a revaluation of this
method.

For instance, it is possible for how-parts to be misattributed to the wrong
skill. Consider for example, the case of an untrained simulated learner seeing
215 + 846, and asking for examples of how to do the first few steps. Adding the
5 and 6 produces 11, creating an opportunity for the same skill to be induced
and attributed to the first two actions (which should utilize seperate skills)—
placing a 1 below and carry a 1 to the next column. Since the interface elements
on which the two actions act are different, the where-learning mechanism for
that skill will over-generalize the conditions constraining legal bindings of the
selection field causing the agent to apply the skill in a number of absurd ways.

4.1 Two Methods for Addressing Overgeneralization Errors

To address overgeneralization issues in AL agents we present two possible imple-
mentation changes and evaluate each independently. First, we implement a
means for faulty skills to be removed including those that have overgeneralized.
Second, we implement a where-learning mechanism that is capable of undo-
ing generalization errors. A key observation in both proposed implementation
changes is that faulty skills, either those with incorrect RHSs or overgeneralized
where-part rules, will tend to make more errors than non-faulty ones, especially
late in the training process. From a cognitive standpoint these can be thought of
as persistent weak hypotheses of the true procedure. But these weak hypotheses
should not persist indefinitely in the face of negative reinforcement, and should
eventually be given up on.

Our first implementation change is to add a new removal utility, a number
between 0 and 1 that when lowered below a threshold of .2 signals that a skill
should be removed from an agent. We try three different functions of “p” and
“n” (the numbers of instances of positive and negative feedback) for this utility:
1) the proportion correct p/(p+mn) (same as the which utility) 2) double counted
negatives p/(p+2n), and 3) nonlinearly counted negatives p/p+n+1/4n?). Non-
linearly counted negatives implements the intuition that skills that persistently
produce errors after considerable training are more likely to be faulty than skills
that only produce errors initially while a skills when-part rules are still being
refined.

Toward Stable Asymptotic Learning with Simulated Learners 393

Our second implementation change introduces a fourth condition called
“recovering where” that enables overgeneralized where-part conditions to return
to a more specific state. Each newly generalized set of where-part conditions
has its own removal utility that is updated, when applicable, with positive or
negative feedback, and is removed when the utility calculated on the counts of
positive and negative feedback falls below a threshold of .5.

4.2 Results of Implementation Changes

For all tested variations of the two proposed implementation changes we ran
100 agents on 100 3 x 3 multi-column addition problems. The first problem is
always fixed to 215 + 846 to ensure that a large number of the agents exhibit the
where-part overgeneralization issue, and the remaining 99 problems are sampled
randomly.

recovering where
plip+n)

== pl(p+2n)

— plp+n+in?)

error-rate

\

-
e s I, SRR

problem

Fig. 1. Comparison of four recovery methods from where-part overgeneralization

Among the implementations of skill removal utility, nonlinearly counted neg-
atives (i.e. “p/(p+mn+1/4n?)”) reliably removed overgeneralized and persistent
weak skills, while the other methods still exhibited persistant error. We sus-
pect that the ‘recovering where’ condition was ineffective because each compet-
ing where-part generalization shares a when-learning mechanism, meaning that
even if bad generalizations are eliminated, eventually a considerable number of
unusual training instances centered around irrelevant selection fields will remain
in the when training history, making it far more challenging to establish a set
of consistent when-part conditions. Whole skill removal by contrast is a consis-
tently more effective method of over-generalization removal since removing an
entire skill allows for a new skill to be induced in its place, giving when-learning
a clean slate to work with.

5 Conclusion

In this work we have identified challenges to achieving asymptotic performance
with simulated learners and remediated sources of persistent asymptotic error
in simulated learners implemented with the Apprentice Learner Framework.

394

D. Weitekamp et al.

References

11.

12.

13.

14.

. Aleven, V., McLaren, B.M., Sewall, J., Koedinger, K.R.: The cognitive tutor

authoring tools (CTAT): preliminary evaluation of efficiency gains. In: Ikeda, M.,
Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 61-70. Springer,
Heidelberg (2006). https://doi.org/10.1007/11774303_7

. Aleven, V., Sewall, J., McLaren, B.M., Koedinger, K.R.: Rapid authoring of intel-

ligent tutors for real-world and experimental use. In: Sixth IEEE International
Conference on Advanced Learning Technologies (ICALT 2006), pp. 847-851. IEEE
(2006)

. Blessing, S.B., Gilbert, S.B., Ourada, S., Ritter, S.: Authoring model-tracing cog-

nitive tutors. Int. J. Artif. Intell. Educ 19(2), 189-210 (2009)

. Koedinger, K.R., Anderson, J.R., Hadley, W.H., Mark, M.A.: Intelligent tutoring

goes to school in the big city (1997)

. Li, N., Cohen, W.W., Koedinger, K.R., Matsuda, N.: A machine learning approach

for automatic student model discovery. In: Edm, pp. 31-40. ERIC (2011)

. Maclellan, C.J., Harpstead, E., Patel, R., Koedinger, K.R.: The apprentice learner

architecture: closing the loop between learning theory and educational data. In:
International Education Data Mining Society (2016)

. MacLellan, C.J., et al.: Authoring tutors with complex solutions: a comparative

analysis of example tracing and simstudent. In: The 2nd ATED Workshop on Sim-
ulated Learners. CEUR-WS.org, Madrid, Spain (2015)

. MacLellan, C.J., Koedinger, K.R.: Domain-general tutor authoring with apprentice

learner models. Int. J. Artif. Intell. Educ. 1-42 (2020). https://link.springer.com/
journal /40593 /topicalCollection/AC_d47d1642e3402a9a8134¢35afb7851¢8

. Martin, D.: Nools. https://github.com/noolsjs/nools
. Matsuda, N., Cohen, W.W., Koedinger, K.R.: Teaching the teacher: tutoring sim-

student leads to more effective cognitive tutor authoring. Int. J. Artif. Intell. Educ.
25(1), 1-34 (2015)

Matsuda, N., Keiser, V., Raizada, R., Stylianides, G., Cohen, W.W., Koedinger,
K.R.: Learning by teaching simstudent — interactive event. In: Biswas, G., Bull, S.,
Kay, J., Mitrovic, A. (eds.) AIED 2011. LNCS (LNAI), vol. 6738, p. 623. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21869-9_124

VanLehn, K.: The relative effectiveness of human tutoring, intelligent tutoring
systems, and other tutoring systems. Educ. Psychol. 46(4), 197-221 (2011)
Weitekamp, D., Harpstead, E., Koedinger, K.: An interaction design for machine
teaching to develop AI tutors. In: CHI (2020). in press

Weitekamp, D., Ye, Z., Rachatasumrit, N., Harpstead, E., Koedinger, K.: Investi-
gating differential error types between human and simulated learners. In: Bitten-
court, L.I., Cukurova, M., Muldner, K., Luckin, R., Milldn, E. (eds.) AIED 2020.
LNCS (LNAI), vol. 12163, pp. 586-597. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-52237-7_47

https://doi.org/10.1007/11774303_7
https://link.springer.com/journal/40593/topicalCollection/AC_d47d1642e3402a9a8134c35afb7851c8
https://link.springer.com/journal/40593/topicalCollection/AC_d47d1642e3402a9a8134c35afb7851c8
https://github.com/noolsjs/nools
https://doi.org/10.1007/978-3-642-21869-9_124
https://doi.org/10.1007/978-3-030-52237-7_47
https://doi.org/10.1007/978-3-030-52237-7_47

	Toward Stable Asymptotic Learning with Simulated Learners
	1 Introduction
	2 Training Test Domain: Multi-column Addition ITS
	3 A Brief Overview of the Apprentice Learner Framework
	4 Addressing Lingering Weak and Overgeneral Skills
	4.1 Two Methods for Addressing Overgeneralization Errors
	4.2 Results of Implementation Changes

	5 Conclusion
	References

